Whakaoti mō x
x=80
x = \frac{140}{11} = 12\frac{8}{11} \approx 12.727272727
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-20\right)\times 400+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,20 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-20\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-20.
400x-8000+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-20 ki te 400.
400x-8000+\left(x-20\right)\times 80\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakawehea te 400 ki te 5, kia riro ko 80.
400x-8000+\left(x-20\right)\times 160+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakareatia te 80 ki te 2, ka 160.
400x-8000+160x-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-20 ki te 160.
560x-8000-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Pahekotia te 400x me 160x, ka 560x.
560x-11200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Tangohia te 3200 i te -8000, ka -11200.
560x-11200+x\times 80\times 3=11x\left(x-20\right)
Whakawehea te 400 ki te 5, kia riro ko 80.
560x-11200+x\times 240=11x\left(x-20\right)
Whakareatia te 80 ki te 3, ka 240.
800x-11200=11x\left(x-20\right)
Pahekotia te 560x me x\times 240, ka 800x.
800x-11200=11x^{2}-220x
Whakamahia te āhuatanga tohatoha hei whakarea te 11x ki te x-20.
800x-11200-11x^{2}=-220x
Tangohia te 11x^{2} mai i ngā taha e rua.
800x-11200-11x^{2}+220x=0
Me tāpiri te 220x ki ngā taha e rua.
1020x-11200-11x^{2}=0
Pahekotia te 800x me 220x, ka 1020x.
-11x^{2}+1020x-11200=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1020±\sqrt{1020^{2}-4\left(-11\right)\left(-11200\right)}}{2\left(-11\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -11 mō a, 1020 mō b, me -11200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1020±\sqrt{1040400-4\left(-11\right)\left(-11200\right)}}{2\left(-11\right)}
Pūrua 1020.
x=\frac{-1020±\sqrt{1040400+44\left(-11200\right)}}{2\left(-11\right)}
Whakareatia -4 ki te -11.
x=\frac{-1020±\sqrt{1040400-492800}}{2\left(-11\right)}
Whakareatia 44 ki te -11200.
x=\frac{-1020±\sqrt{547600}}{2\left(-11\right)}
Tāpiri 1040400 ki te -492800.
x=\frac{-1020±740}{2\left(-11\right)}
Tuhia te pūtakerua o te 547600.
x=\frac{-1020±740}{-22}
Whakareatia 2 ki te -11.
x=-\frac{280}{-22}
Nā, me whakaoti te whārite x=\frac{-1020±740}{-22} ina he tāpiri te ±. Tāpiri -1020 ki te 740.
x=\frac{140}{11}
Whakahekea te hautanga \frac{-280}{-22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{1760}{-22}
Nā, me whakaoti te whārite x=\frac{-1020±740}{-22} ina he tango te ±. Tango 740 mai i -1020.
x=80
Whakawehe -1760 ki te -22.
x=\frac{140}{11} x=80
Kua oti te whārite te whakatau.
\left(x-20\right)\times 400+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,20 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-20\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x-20.
400x-8000+\left(x-20\right)\times \frac{400}{5}\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-20 ki te 400.
400x-8000+\left(x-20\right)\times 80\times 2+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakawehea te 400 ki te 5, kia riro ko 80.
400x-8000+\left(x-20\right)\times 160+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakareatia te 80 ki te 2, ka 160.
400x-8000+160x-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-20 ki te 160.
560x-8000-3200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Pahekotia te 400x me 160x, ka 560x.
560x-11200+x\times \frac{400}{5}\times 3=11x\left(x-20\right)
Tangohia te 3200 i te -8000, ka -11200.
560x-11200+x\times 80\times 3=11x\left(x-20\right)
Whakawehea te 400 ki te 5, kia riro ko 80.
560x-11200+x\times 240=11x\left(x-20\right)
Whakareatia te 80 ki te 3, ka 240.
800x-11200=11x\left(x-20\right)
Pahekotia te 560x me x\times 240, ka 800x.
800x-11200=11x^{2}-220x
Whakamahia te āhuatanga tohatoha hei whakarea te 11x ki te x-20.
800x-11200-11x^{2}=-220x
Tangohia te 11x^{2} mai i ngā taha e rua.
800x-11200-11x^{2}+220x=0
Me tāpiri te 220x ki ngā taha e rua.
1020x-11200-11x^{2}=0
Pahekotia te 800x me 220x, ka 1020x.
1020x-11x^{2}=11200
Me tāpiri te 11200 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-11x^{2}+1020x=11200
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-11x^{2}+1020x}{-11}=\frac{11200}{-11}
Whakawehea ngā taha e rua ki te -11.
x^{2}+\frac{1020}{-11}x=\frac{11200}{-11}
Mā te whakawehe ki te -11 ka wetekia te whakareanga ki te -11.
x^{2}-\frac{1020}{11}x=\frac{11200}{-11}
Whakawehe 1020 ki te -11.
x^{2}-\frac{1020}{11}x=-\frac{11200}{11}
Whakawehe 11200 ki te -11.
x^{2}-\frac{1020}{11}x+\left(-\frac{510}{11}\right)^{2}=-\frac{11200}{11}+\left(-\frac{510}{11}\right)^{2}
Whakawehea te -\frac{1020}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{510}{11}. Nā, tāpiria te pūrua o te -\frac{510}{11} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1020}{11}x+\frac{260100}{121}=-\frac{11200}{11}+\frac{260100}{121}
Pūruatia -\frac{510}{11} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1020}{11}x+\frac{260100}{121}=\frac{136900}{121}
Tāpiri -\frac{11200}{11} ki te \frac{260100}{121} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{510}{11}\right)^{2}=\frac{136900}{121}
Tauwehea x^{2}-\frac{1020}{11}x+\frac{260100}{121}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{510}{11}\right)^{2}}=\sqrt{\frac{136900}{121}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{510}{11}=\frac{370}{11} x-\frac{510}{11}=-\frac{370}{11}
Whakarūnātia.
x=80 x=\frac{140}{11}
Me tāpiri \frac{510}{11} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}