Whakaoti mō x
x=20\sqrt{3}\approx 34.641016151
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 40 }{ 1 } = \frac{ x }{ \frac{ \sqrt{ 3 } }{ 2 } }
Tohaina
Kua tāruatia ki te papatopenga
40=\frac{x}{\frac{\sqrt{3}}{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
40=\frac{x\times 2}{\sqrt{3}}
Whakawehe x ki te \frac{\sqrt{3}}{2} mā te whakarea x ki te tau huripoki o \frac{\sqrt{3}}{2}.
40=\frac{x\times 2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{x\times 2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
40=\frac{x\times 2\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{x\times 2\sqrt{3}}{3}=40
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\times 2\sqrt{3}=40\times 3
Me whakarea ngā taha e rua ki te 3.
x\times 2\sqrt{3}=120
Whakareatia te 40 ki te 3, ka 120.
2\sqrt{3}x=120
He hanga arowhānui tō te whārite.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{120}{2\sqrt{3}}
Whakawehea ngā taha e rua ki te 2\sqrt{3}.
x=\frac{120}{2\sqrt{3}}
Mā te whakawehe ki te 2\sqrt{3} ka wetekia te whakareanga ki te 2\sqrt{3}.
x=20\sqrt{3}
Whakawehe 120 ki te 2\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}