Whakaoti mō x
x\in \left(-\infty,-1\right)\cup \left(\frac{3}{2},\infty\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+1>0 x+1<0
Kāore e taea a te tauraro x+1 te numa kore nā te mea kāore te rituatanga mā te kore e tautuhi. E rua ngā kēhi.
x>-1
Whakaarohia te kēhi i ngā wā kei te tōrunga a x+1. Neke atu a 1 ki te taha matau.
4-x<x+1
Kāore te tōrite tuatahi e whakarerekē te aronga ina e whakarea ana mā x+1 mō x+1>0.
-x-x<-4+1
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
-2x<-3
Pahekotia ngā kīanga tau ōrite.
x>\frac{3}{2}
Whakawehea ngā taha e rua ki te -2. I te mea he tōraro a -2, ka huri te ahunga koreōrite.
x>\frac{3}{2}
Whakaarohia te herenga x>-1 e tautuhi ana ki runga. E noho ōrite te toenga.
x<-1
Tēnā, me whakaarohia te tauira ina e tōraro a x+1. Neke atu a 1 ki te taha matau.
4-x>x+1
E whakarerekē ana te aronga o te tōrite tuatahi hei ngā wā e whakarea ana a x+1 mō x+1<0.
-x-x>-4+1
Neke atu ngā kīanga tau e whai ana i x ki te taha mauī me ētahi atu kupu katoa ki te taha matau.
-2x>-3
Pahekotia ngā kīanga tau ōrite.
x<\frac{3}{2}
Whakawehea ngā taha e rua ki te -2. I te mea he tōraro a -2, ka huri te ahunga koreōrite.
x<-1
Whakaarohia te herenga x<-1 e tautuhi ana ki runga.
x\in \left(-\infty,-1\right)\cup \left(\frac{3}{2},\infty\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}