\frac{ 4 { m }^{ 2 } -16 { n }^{ 2 } -4n+2m }{ }
Tauwehe
2\left(m-2n\right)\left(2m+4n+1\right)
Aromātai
2\left(m-2n\right)\left(2m+4n+1\right)
Tohaina
Kua tāruatia ki te papatopenga
2\left(2m^{2}-8n^{2}-2n+m\right)
Tauwehea te 2.
2m^{2}+m-8n^{2}-2n
Whakaarohia te 2m^{2}-8n^{2}-2n+m. Whakaarohia te 2m^{2}-8n^{2}-2n+m hei pūrau ki runga i te taurangi m.
\left(m-2n\right)\left(2m+4n+1\right)
Kimihia he tauwehe o te āhua km^{p}+q, e wehea ai e km^{p} te huatahi me te pū nui rawa 2m^{2}, e wehea hoki e q te tauwehe pūmau -8n^{2}-2n. Ko tētahi tauwehe pērā ko m-2n. Whakatauwehea te pūrau mā te whakawehe ki tēnei tauwehe.
2\left(m-2n\right)\left(2m+4n+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
4m^{2}-16n^{2}-4n+2m
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}