Whakaoti mō x (complex solution)
x=\frac{-\sqrt{7}i+9}{2}\approx 4.5-1.322875656i
x=\frac{9+\sqrt{7}i}{2}\approx 4.5+1.322875656i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-4\right)\times 4-\left(x-2\right)\left(x-3\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 2,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x-4.
4x-16-\left(x-2\right)\left(x-3\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 4.
4x-16-\left(x^{2}-5x+6\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-3 ka whakakotahi i ngā kupu rite.
4x-16-x^{2}+5x-6=0
Hei kimi i te tauaro o x^{2}-5x+6, kimihia te tauaro o ia taurangi.
9x-16-x^{2}-6=0
Pahekotia te 4x me 5x, ka 9x.
9x-22-x^{2}=0
Tangohia te 6 i te -16, ka -22.
-x^{2}+9x-22=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 9 mō b, me -22 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-22\right)}}{2\left(-1\right)}
Pūrua 9.
x=\frac{-9±\sqrt{81+4\left(-22\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-9±\sqrt{81-88}}{2\left(-1\right)}
Whakareatia 4 ki te -22.
x=\frac{-9±\sqrt{-7}}{2\left(-1\right)}
Tāpiri 81 ki te -88.
x=\frac{-9±\sqrt{7}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -7.
x=\frac{-9±\sqrt{7}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-9+\sqrt{7}i}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{7}i}{-2} ina he tāpiri te ±. Tāpiri -9 ki te i\sqrt{7}.
x=\frac{-\sqrt{7}i+9}{2}
Whakawehe -9+i\sqrt{7} ki te -2.
x=\frac{-\sqrt{7}i-9}{-2}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{7}i}{-2} ina he tango te ±. Tango i\sqrt{7} mai i -9.
x=\frac{9+\sqrt{7}i}{2}
Whakawehe -9-i\sqrt{7} ki te -2.
x=\frac{-\sqrt{7}i+9}{2} x=\frac{9+\sqrt{7}i}{2}
Kua oti te whārite te whakatau.
\left(x-4\right)\times 4-\left(x-2\right)\left(x-3\right)=0
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 2,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x-4.
4x-16-\left(x-2\right)\left(x-3\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 4.
4x-16-\left(x^{2}-5x+6\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-3 ka whakakotahi i ngā kupu rite.
4x-16-x^{2}+5x-6=0
Hei kimi i te tauaro o x^{2}-5x+6, kimihia te tauaro o ia taurangi.
9x-16-x^{2}-6=0
Pahekotia te 4x me 5x, ka 9x.
9x-22-x^{2}=0
Tangohia te 6 i te -16, ka -22.
9x-x^{2}=22
Me tāpiri te 22 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x^{2}+9x=22
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{22}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{9}{-1}x=\frac{22}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-9x=\frac{22}{-1}
Whakawehe 9 ki te -1.
x^{2}-9x=-22
Whakawehe 22 ki te -1.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-22+\left(-\frac{9}{2}\right)^{2}
Whakawehea te -9, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{2}. Nā, tāpiria te pūrua o te -\frac{9}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-9x+\frac{81}{4}=-22+\frac{81}{4}
Pūruatia -\frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-9x+\frac{81}{4}=-\frac{7}{4}
Tāpiri -22 ki te \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=-\frac{7}{4}
Tauwehea x^{2}-9x+\frac{81}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{2}=\frac{\sqrt{7}i}{2} x-\frac{9}{2}=-\frac{\sqrt{7}i}{2}
Whakarūnātia.
x=\frac{9+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+9}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}