Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}+\frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-3 me a+3 ko \left(a-3\right)\left(a+3\right). Whakareatia \frac{4}{a-3} ki te \frac{a+3}{a+3}. Whakareatia \frac{3}{a+3} ki te \frac{a-3}{a-3}.
\frac{4\left(a+3\right)+3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Tā te mea he rite te tauraro o \frac{4\left(a+3\right)}{\left(a-3\right)\left(a+3\right)} me \frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4a+12+3a-9}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Mahia ngā whakarea i roto o 4\left(a+3\right)+3\left(a-3\right).
\frac{7a+3}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Whakakotahitia ngā kupu rite i 4a+12+3a-9.
\frac{7a+3}{\left(a-3\right)\left(a+3\right)}-\frac{24}{\left(a-3\right)\left(a+3\right)}
Tauwehea te a^{2}-9.
\frac{7a+3-24}{\left(a-3\right)\left(a+3\right)}
Tā te mea he rite te tauraro o \frac{7a+3}{\left(a-3\right)\left(a+3\right)} me \frac{24}{\left(a-3\right)\left(a+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{7a-21}{\left(a-3\right)\left(a+3\right)}
Whakakotahitia ngā kupu rite i 7a+3-24.
\frac{7\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{7a-21}{\left(a-3\right)\left(a+3\right)}.
\frac{7}{a+3}
Me whakakore tahi te a-3 i te taurunga me te tauraro.