Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{3}-\left(\frac{1}{9}-\frac{3}{9}\right)-\frac{3}{2}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{1}{9} me \frac{1}{3} ki te hautau me te tautūnga 9.
\frac{4}{3}-\frac{1-3}{9}-\frac{3}{2}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{1}{9} me \frac{3}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{3}-\left(-\frac{2}{9}\right)-\frac{3}{2}-1+\frac{17}{18}
Tangohia te 3 i te 1, ka -2.
\frac{4}{3}+\frac{2}{9}-\frac{3}{2}-1+\frac{17}{18}
Ko te tauaro o -\frac{2}{9} ko \frac{2}{9}.
\frac{12}{9}+\frac{2}{9}-\frac{3}{2}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{4}{3} me \frac{2}{9} ki te hautau me te tautūnga 9.
\frac{12+2}{9}-\frac{3}{2}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{12}{9} me \frac{2}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14}{9}-\frac{3}{2}-1+\frac{17}{18}
Tāpirihia te 12 ki te 2, ka 14.
\frac{28}{18}-\frac{27}{18}-1+\frac{17}{18}
Ko te maha noa iti rawa atu o 9 me 2 ko 18. Me tahuri \frac{14}{9} me \frac{3}{2} ki te hautau me te tautūnga 18.
\frac{28-27}{18}-1+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{28}{18} me \frac{27}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{18}-1+\frac{17}{18}
Tangohia te 27 i te 28, ka 1.
\frac{1}{18}-\frac{18}{18}+\frac{17}{18}
Me tahuri te 1 ki te hautau \frac{18}{18}.
\frac{1-18}{18}+\frac{17}{18}
Tā te mea he rite te tauraro o \frac{1}{18} me \frac{18}{18}, me tango rāua mā te tango i ō raua taurunga.
-\frac{17}{18}+\frac{17}{18}
Tangohia te 18 i te 1, ka -17.
0
Tāpirihia te -\frac{17}{18} ki te \frac{17}{18}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}