Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4}{3}r^{3}=\frac{h}{3}\times \left(\frac{175r}{1}\right)^{3}
Me whakakore te \pi ki ngā taha e rua.
4r^{3}=h\times \left(\frac{175r}{1}\right)^{3}
Whakareatia ngā taha e rua o te whārite ki te 3.
4r^{3}=h\times \left(175r\right)^{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
4r^{3}=h\times 175^{3}r^{3}
Whakarohaina te \left(175r\right)^{3}.
4r^{3}=h\times 5359375r^{3}
Tātaihia te 175 mā te pū o 3, kia riro ko 5359375.
h\times 5359375r^{3}=4r^{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5359375r^{3}h=4r^{3}
He hanga arowhānui tō te whārite.
\frac{5359375r^{3}h}{5359375r^{3}}=\frac{4r^{3}}{5359375r^{3}}
Whakawehea ngā taha e rua ki te 5359375r^{3}.
h=\frac{4r^{3}}{5359375r^{3}}
Mā te whakawehe ki te 5359375r^{3} ka wetekia te whakareanga ki te 5359375r^{3}.
h=\frac{4}{5359375}
Whakawehe 4r^{3} ki te 5359375r^{3}.