Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4+x^{2}\times 45=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
x^{2}\times 45=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=-\frac{4}{45}
Whakawehea ngā taha e rua ki te 45.
x=\frac{2\sqrt{5}i}{15} x=-\frac{2\sqrt{5}i}{15}
Kua oti te whārite te whakatau.
4+x^{2}\times 45=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{2}.
45x^{2}+4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 45\times 4}}{2\times 45}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 45 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 45\times 4}}{2\times 45}
Pūrua 0.
x=\frac{0±\sqrt{-180\times 4}}{2\times 45}
Whakareatia -4 ki te 45.
x=\frac{0±\sqrt{-720}}{2\times 45}
Whakareatia -180 ki te 4.
x=\frac{0±12\sqrt{5}i}{2\times 45}
Tuhia te pūtakerua o te -720.
x=\frac{0±12\sqrt{5}i}{90}
Whakareatia 2 ki te 45.
x=\frac{2\sqrt{5}i}{15}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}i}{90} ina he tāpiri te ±.
x=-\frac{2\sqrt{5}i}{15}
Nā, me whakaoti te whārite x=\frac{0±12\sqrt{5}i}{90} ina he tango te ±.
x=\frac{2\sqrt{5}i}{15} x=-\frac{2\sqrt{5}i}{15}
Kua oti te whārite te whakatau.