Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{2}-6} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+6.
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}\right)^{2}-6^{2}}
Whakaarohia te \left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+6\right)}{2-36}
Pūrua \sqrt{2}. Pūrua 6.
\frac{4\left(\sqrt{2}+6\right)}{-34}
Tangohia te 36 i te 2, ka -34.
-\frac{2}{17}\left(\sqrt{2}+6\right)
Whakawehea te 4\left(\sqrt{2}+6\right) ki te -34, kia riro ko -\frac{2}{17}\left(\sqrt{2}+6\right).
-\frac{2}{17}\sqrt{2}-\frac{2}{17}\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{2}{17} ki te \sqrt{2}+6.
-\frac{2}{17}\sqrt{2}+\frac{-2\times 6}{17}
Tuhia te -\frac{2}{17}\times 6 hei hautanga kotahi.
-\frac{2}{17}\sqrt{2}+\frac{-12}{17}
Whakareatia te -2 ki te 6, ka -12.
-\frac{2}{17}\sqrt{2}-\frac{12}{17}
Ka taea te hautanga \frac{-12}{17} te tuhi anō ko -\frac{12}{17} mā te tango i te tohu tōraro.