Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(\sqrt{13}+3\right)}{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{13}-3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{13}+3.
\frac{4\left(\sqrt{13}+3\right)}{\left(\sqrt{13}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{13}+3\right)}{13-9}
Pūrua \sqrt{13}. Pūrua 3.
\frac{4\left(\sqrt{13}+3\right)}{4}
Tangohia te 9 i te 13, ka 4.
\sqrt{13}+3
Me whakakore te 4 me te 4.