Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(\sqrt{10}-3\right)}{\left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right)}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{10}+3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}-3.
\frac{4\left(\sqrt{10}-3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{10}+3\right)\left(\sqrt{10}-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{10}-3\right)}{10-9}
Pūrua \sqrt{10}. Pūrua 3.
\frac{4\left(\sqrt{10}-3\right)}{1}
Tangohia te 9 i te 10, ka 1.
4\left(\sqrt{10}-3\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
4\sqrt{10}-12
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te \sqrt{10}-3.