Whakaoti mō x
x = -\frac{33}{5} = -6\frac{3}{5} = -6.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(3x-1\right)-2\left(2x+1\right)=3-41
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,6.
9x-3-2\left(2x+1\right)=3-41
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-1.
9x-3-4x-2=3-41
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2x+1.
5x-3-2=3-41
Pahekotia te 9x me -4x, ka 5x.
5x-5=3-41
Tangohia te 2 i te -3, ka -5.
5x-5=-38
Tangohia te 41 i te 3, ka -38.
5x=-38+5
Me tāpiri te 5 ki ngā taha e rua.
5x=-33
Tāpirihia te -38 ki te 5, ka -33.
x=\frac{-33}{5}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{33}{5}
Ka taea te hautanga \frac{-33}{5} te tuhi anō ko -\frac{33}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}