Whakaoti mō x
x=-\frac{9}{28}\approx -0.321428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\left(3x+2\right)-20=5\left(2x-1\right)-4\left(2x+1\right)
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,5.
30x+20-20=5\left(2x-1\right)-4\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te 3x+2.
30x=5\left(2x-1\right)-4\left(2x+1\right)
Tangohia te 20 i te 20, ka 0.
30x=10x-5-4\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x-1.
30x=10x-5-8x-4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 2x+1.
30x=2x-5-4
Pahekotia te 10x me -8x, ka 2x.
30x=2x-9
Tangohia te 4 i te -5, ka -9.
30x-2x=-9
Tangohia te 2x mai i ngā taha e rua.
28x=-9
Pahekotia te 30x me -2x, ka 28x.
x=\frac{-9}{28}
Whakawehea ngā taha e rua ki te 28.
x=-\frac{9}{28}
Ka taea te hautanga \frac{-9}{28} te tuhi anō ko -\frac{9}{28} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}