\frac{ 3x }{ 5 } + 33 \frac { 1 } { 3 } \%
Aromātai
\frac{3x}{5}+\frac{1}{3}
Whakaroha
\frac{3x}{5}+\frac{1}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3x}{5}+\frac{33\times 3+1}{3\times 100}
Tuhia te \frac{\frac{33\times 3+1}{3}}{100} hei hautanga kotahi.
\frac{3x}{5}+\frac{99+1}{3\times 100}
Whakareatia te 33 ki te 3, ka 99.
\frac{3x}{5}+\frac{100}{3\times 100}
Tāpirihia te 99 ki te 1, ka 100.
\frac{3x}{5}+\frac{100}{300}
Whakareatia te 3 ki te 100, ka 300.
\frac{3x}{5}+\frac{1}{3}
Whakahekea te hautanga \frac{100}{300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 100.
\frac{3\times 3x}{15}+\frac{5}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{3x}{5} ki te \frac{3}{3}. Whakareatia \frac{1}{3} ki te \frac{5}{5}.
\frac{3\times 3x+5}{15}
Tā te mea he rite te tauraro o \frac{3\times 3x}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9x+5}{15}
Mahia ngā whakarea i roto o 3\times 3x+5.
\frac{3x}{5}+\frac{33\times 3+1}{3\times 100}
Tuhia te \frac{\frac{33\times 3+1}{3}}{100} hei hautanga kotahi.
\frac{3x}{5}+\frac{99+1}{3\times 100}
Whakareatia te 33 ki te 3, ka 99.
\frac{3x}{5}+\frac{100}{3\times 100}
Tāpirihia te 99 ki te 1, ka 100.
\frac{3x}{5}+\frac{100}{300}
Whakareatia te 3 ki te 100, ka 300.
\frac{3x}{5}+\frac{1}{3}
Whakahekea te hautanga \frac{100}{300} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 100.
\frac{3\times 3x}{15}+\frac{5}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 3 ko 15. Whakareatia \frac{3x}{5} ki te \frac{3}{3}. Whakareatia \frac{1}{3} ki te \frac{5}{5}.
\frac{3\times 3x+5}{15}
Tā te mea he rite te tauraro o \frac{3\times 3x}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9x+5}{15}
Mahia ngā whakarea i roto o 3\times 3x+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}