Whakaoti mō b
b=-\frac{5\left(2x+3\right)}{x-18}
x\neq 18\text{ and }x\neq -\frac{3}{2}\text{ and }x\neq 5
Whakaoti mō x
x=-\frac{3\left(5-6b\right)}{b+10}
b\neq 0\text{ and }b\neq -10\text{ and }b\neq 5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-5\right)\times 3b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+3,x-5.
\left(3x-15\right)b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 3.
3xb-15b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-15 ki te b.
3xb-15b-\left(2xb-2x^{2}+3b-3x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te b-x.
3xb-15b-2xb+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Hei kimi i te tauaro o 2xb-2x^{2}+3b-3x, kimihia te tauaro o ia taurangi.
xb-15b+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Pahekotia te 3xb me -2xb, ka xb.
xb-18b+2x^{2}+3x=\left(x-5\right)\left(2x+3\right)
Pahekotia te -15b me -3b, ka -18b.
xb-18b+2x^{2}+3x=2x^{2}-7x-15
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te 2x+3 ka whakakotahi i ngā kupu rite.
xb-18b+3x=2x^{2}-7x-15-2x^{2}
Tangohia te 2x^{2} mai i ngā taha e rua.
xb-18b+3x=-7x-15
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
xb-18b=-7x-15-3x
Tangohia te 3x mai i ngā taha e rua.
xb-18b=-10x-15
Pahekotia te -7x me -3x, ka -10x.
\left(x-18\right)b=-10x-15
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\frac{\left(x-18\right)b}{x-18}=\frac{-10x-15}{x-18}
Whakawehea ngā taha e rua ki te x-18.
b=\frac{-10x-15}{x-18}
Mā te whakawehe ki te x-18 ka wetekia te whakareanga ki te x-18.
b=-\frac{5\left(2x+3\right)}{x-18}
Whakawehe -10x-15 ki te x-18.
\left(x-5\right)\times 3b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+3,x-5.
\left(3x-15\right)b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 3.
3xb-15b-\left(2x+3\right)\left(b-x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x-15 ki te b.
3xb-15b-\left(2xb-2x^{2}+3b-3x\right)=\left(x-5\right)\left(2x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x+3 ki te b-x.
3xb-15b-2xb+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Hei kimi i te tauaro o 2xb-2x^{2}+3b-3x, kimihia te tauaro o ia taurangi.
xb-15b+2x^{2}-3b+3x=\left(x-5\right)\left(2x+3\right)
Pahekotia te 3xb me -2xb, ka xb.
xb-18b+2x^{2}+3x=\left(x-5\right)\left(2x+3\right)
Pahekotia te -15b me -3b, ka -18b.
xb-18b+2x^{2}+3x=2x^{2}-7x-15
Whakamahia te āhuatanga tuaritanga hei whakarea te x-5 ki te 2x+3 ka whakakotahi i ngā kupu rite.
xb-18b+2x^{2}+3x-2x^{2}=-7x-15
Tangohia te 2x^{2} mai i ngā taha e rua.
xb-18b+3x=-7x-15
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
xb-18b+3x+7x=-15
Me tāpiri te 7x ki ngā taha e rua.
xb-18b+10x=-15
Pahekotia te 3x me 7x, ka 10x.
xb+10x=-15+18b
Me tāpiri te 18b ki ngā taha e rua.
\left(b+10\right)x=-15+18b
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(b+10\right)x=18b-15
He hanga arowhānui tō te whārite.
\frac{\left(b+10\right)x}{b+10}=\frac{18b-15}{b+10}
Whakawehea ngā taha e rua ki te b+10.
x=\frac{18b-15}{b+10}
Mā te whakawehe ki te b+10 ka wetekia te whakareanga ki te b+10.
x=\frac{3\left(6b-5\right)}{b+10}
Whakawehe -15+18b ki te b+10.
x=\frac{3\left(6b-5\right)}{b+10}\text{, }x\neq -\frac{3}{2}\text{ and }x\neq 5
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}