Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36\times 36\times 25=yy
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 36xy, arā, te tauraro pātahi he tino iti rawa te kitea o xy,36x.
36\times 36\times 25=y^{2}
Whakareatia te y ki te y, ka y^{2}.
1296\times 25=y^{2}
Whakareatia te 36 ki te 36, ka 1296.
32400=y^{2}
Whakareatia te 1296 ki te 25, ka 32400.
y^{2}=32400
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=180 y=-180
Tuhia te pūtakerua o ngā taha e rua o te whārite.
36\times 36\times 25=yy
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 36xy, arā, te tauraro pātahi he tino iti rawa te kitea o xy,36x.
36\times 36\times 25=y^{2}
Whakareatia te y ki te y, ka y^{2}.
1296\times 25=y^{2}
Whakareatia te 36 ki te 36, ka 1296.
32400=y^{2}
Whakareatia te 1296 ki te 25, ka 32400.
y^{2}=32400
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y^{2}-32400=0
Tangohia te 32400 mai i ngā taha e rua.
y=\frac{0±\sqrt{0^{2}-4\left(-32400\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -32400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-32400\right)}}{2}
Pūrua 0.
y=\frac{0±\sqrt{129600}}{2}
Whakareatia -4 ki te -32400.
y=\frac{0±360}{2}
Tuhia te pūtakerua o te 129600.
y=180
Nā, me whakaoti te whārite y=\frac{0±360}{2} ina he tāpiri te ±. Whakawehe 360 ki te 2.
y=-180
Nā, me whakaoti te whārite y=\frac{0±360}{2} ina he tango te ±. Whakawehe -360 ki te 2.
y=180 y=-180
Kua oti te whārite te whakatau.