Whakaoti mō x
x=80
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+40\right)\times 3200=2x\times 2400
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -40,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+40\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+40.
3200x+128000=2x\times 2400
Whakamahia te āhuatanga tohatoha hei whakarea te x+40 ki te 3200.
3200x+128000=4800x
Whakareatia te 2 ki te 2400, ka 4800.
3200x+128000-4800x=0
Tangohia te 4800x mai i ngā taha e rua.
-1600x+128000=0
Pahekotia te 3200x me -4800x, ka -1600x.
-1600x=-128000
Tangohia te 128000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-128000}{-1600}
Whakawehea ngā taha e rua ki te -1600.
x=80
Whakawehea te -128000 ki te -1600, kia riro ko 80.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}