Whakaoti mō x
x = \frac{167}{4} = 41\frac{3}{4} = 41.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(45-x\right)\left(30-37\right)=\left(x-40\right)\left(37-50\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 40,45 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-45\right)\left(x-40\right), arā, te tauraro pātahi he tino iti rawa te kitea o 40-x,x-45.
\left(45-x\right)\left(-7\right)=\left(x-40\right)\left(37-50\right)
Tangohia te 37 i te 30, ka -7.
-315+7x=\left(x-40\right)\left(37-50\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 45-x ki te -7.
-315+7x=\left(x-40\right)\left(-13\right)
Tangohia te 50 i te 37, ka -13.
-315+7x=-13x+520
Whakamahia te āhuatanga tohatoha hei whakarea te x-40 ki te -13.
-315+7x+13x=520
Me tāpiri te 13x ki ngā taha e rua.
-315+20x=520
Pahekotia te 7x me 13x, ka 20x.
20x=520+315
Me tāpiri te 315 ki ngā taha e rua.
20x=835
Tāpirihia te 520 ki te 315, ka 835.
x=\frac{835}{20}
Whakawehea ngā taha e rua ki te 20.
x=\frac{167}{4}
Whakahekea te hautanga \frac{835}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}