Aromātai
\frac{28190778623577249}{98000000000000000}\approx 0.287661006
Tauwehe
\frac{3 \cdot 87553 \cdot 107328432011}{2 ^ {16} \cdot 5 ^ {15} \cdot 7 ^ {2}} = 0.28766100636303316
Tohaina
Kua tāruatia ki te papatopenga
\frac{30 {(\frac{x}{y})} ^ {2} 0.9396926207859083}{98 {(\frac{x}{y})} ^ {2}}
Evaluate trigonometric functions in the problem
\frac{30\times \frac{x^{2}}{y^{2}}\times 0.9396926207859083}{98\times \left(\frac{x}{y}\right)^{2}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{28.190778623577249\times \frac{x^{2}}{y^{2}}}{98\times \left(\frac{x}{y}\right)^{2}}
Whakareatia te 30 ki te 0.9396926207859083, ka 28.190778623577249.
\frac{28.190778623577249\times \frac{x^{2}}{y^{2}}}{98\times \frac{x^{2}}{y^{2}}}
Kia whakarewa i te \frac{x}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{28.190778623577249\times \frac{x^{2}}{y^{2}}}{\frac{98x^{2}}{y^{2}}}
Tuhia te 98\times \frac{x^{2}}{y^{2}} hei hautanga kotahi.
\frac{28.190778623577249\times \frac{x^{2}}{y^{2}}y^{2}}{98x^{2}}
Whakawehe 28.190778623577249\times \frac{x^{2}}{y^{2}} ki te \frac{98x^{2}}{y^{2}} mā te whakarea 28.190778623577249\times \frac{x^{2}}{y^{2}} ki te tau huripoki o \frac{98x^{2}}{y^{2}}.
\frac{28.190778623577249x^{2}}{98x^{2}}
Me whakakore te y^{2} me te y^{2}.
\frac{28.190778623577249}{98}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{28190778623577249}{98000000000000000}
Whakarohaina te \frac{28.190778623577249}{98} mā te whakarea i te taurunga me te tauraro ki te 1000000000000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}