Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

30=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
30=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
2x^{2}=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{30}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}=15
Whakawehea te 30 ki te 2, kia riro ko 15.
x=\sqrt{15} x=-\sqrt{15}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
30=2xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
30=2x^{2}
Whakareatia te x ki te x, ka x^{2}.
2x^{2}=30
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}-30=0
Tangohia te 30 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-30\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-30\right)}}{2\times 2}
Pūrua 0.
x=\frac{0±\sqrt{-8\left(-30\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{0±\sqrt{240}}{2\times 2}
Whakareatia -8 ki te -30.
x=\frac{0±4\sqrt{15}}{2\times 2}
Tuhia te pūtakerua o te 240.
x=\frac{0±4\sqrt{15}}{4}
Whakareatia 2 ki te 2.
x=\sqrt{15}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{15}}{4} ina he tāpiri te ±.
x=-\sqrt{15}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{15}}{4} ina he tango te ±.
x=\sqrt{15} x=-\sqrt{15}
Kua oti te whārite te whakatau.