Aromātai
\frac{\sqrt{7482090}}{3950}+1.6\approx 2.292491375
Tohaina
Kua tāruatia ki te papatopenga
\frac{32}{20}+\frac{1.2}{2}\sqrt{1+\frac{7.87}{23.7}}
Whakarohaina te \frac{3.2}{2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{8}{5}+\frac{1.2}{2}\sqrt{1+\frac{7.87}{23.7}}
Whakahekea te hautanga \frac{32}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{8}{5}+\frac{12}{20}\sqrt{1+\frac{7.87}{23.7}}
Whakarohaina te \frac{1.2}{2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{8}{5}+\frac{3}{5}\sqrt{1+\frac{7.87}{23.7}}
Whakahekea te hautanga \frac{12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{8}{5}+\frac{3}{5}\sqrt{1+\frac{787}{2370}}
Whakarohaina te \frac{7.87}{23.7} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{2370}{2370}+\frac{787}{2370}}
Me tahuri te 1 ki te hautau \frac{2370}{2370}.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{2370+787}{2370}}
Tā te mea he rite te tauraro o \frac{2370}{2370} me \frac{787}{2370}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8}{5}+\frac{3}{5}\sqrt{\frac{3157}{2370}}
Tāpirihia te 2370 ki te 787, ka 3157.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}}{\sqrt{2370}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3157}{2370}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3157}}{\sqrt{2370}}.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}\sqrt{2370}}{\left(\sqrt{2370}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3157}}{\sqrt{2370}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2370}.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{3157}\sqrt{2370}}{2370}
Ko te pūrua o \sqrt{2370} ko 2370.
\frac{8}{5}+\frac{3}{5}\times \frac{\sqrt{7482090}}{2370}
Hei whakarea \sqrt{3157} me \sqrt{2370}, whakareatia ngā tau i raro i te pūtake rua.
\frac{8}{5}+\frac{3\sqrt{7482090}}{5\times 2370}
Me whakarea te \frac{3}{5} ki te \frac{\sqrt{7482090}}{2370} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{8}{5}+\frac{\sqrt{7482090}}{5\times 790}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{8\times 790}{5\times 790}+\frac{\sqrt{7482090}}{5\times 790}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 5\times 790 ko 5\times 790. Whakareatia \frac{8}{5} ki te \frac{790}{790}.
\frac{8\times 790+\sqrt{7482090}}{5\times 790}
Tā te mea he rite te tauraro o \frac{8\times 790}{5\times 790} me \frac{\sqrt{7482090}}{5\times 790}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6320+\sqrt{7482090}}{5\times 790}
Mahia ngā whakarea i roto o 8\times 790+\sqrt{7482090}.
\frac{6320+\sqrt{7482090}}{3950}
Whakarohaina te 5\times 790.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}