Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+2\right)\left(3-x\right)=\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+2.
x-x^{2}+6=\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 3-x ka whakakotahi i ngā kupu rite.
x-x^{2}+6=x^{2}-2x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x-x^{2}+6=x^{2}-2x+\left(x^{2}-4\right)\left(-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+2 ka whakakotahi i ngā kupu rite.
x-x^{2}+6=x^{2}-2x-2x^{2}+8
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-4 ki te -2.
x-x^{2}+6=-x^{2}-2x+8
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
x-x^{2}+6+x^{2}=-2x+8
Me tāpiri te x^{2} ki ngā taha e rua.
x+6=-2x+8
Pahekotia te -x^{2} me x^{2}, ka 0.
x+6+2x=8
Me tāpiri te 2x ki ngā taha e rua.
3x+6=8
Pahekotia te x me 2x, ka 3x.
3x=8-6
Tangohia te 6 mai i ngā taha e rua.
3x=2
Tangohia te 6 i te 8, ka 2.
x=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.