Whakaoti mō x
x=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\left(3-x\right)=\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x+2.
x-x^{2}+6=\left(x-2\right)x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te 3-x ka whakakotahi i ngā kupu rite.
x-x^{2}+6=x^{2}-2x+\left(x-2\right)\left(x+2\right)\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te x.
x-x^{2}+6=x^{2}-2x+\left(x^{2}-4\right)\left(-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+2 ka whakakotahi i ngā kupu rite.
x-x^{2}+6=x^{2}-2x-2x^{2}+8
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-4 ki te -2.
x-x^{2}+6=-x^{2}-2x+8
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
x-x^{2}+6+x^{2}=-2x+8
Me tāpiri te x^{2} ki ngā taha e rua.
x+6=-2x+8
Pahekotia te -x^{2} me x^{2}, ka 0.
x+6+2x=8
Me tāpiri te 2x ki ngā taha e rua.
3x+6=8
Pahekotia te x me 2x, ka 3x.
3x=8-6
Tangohia te 6 mai i ngā taha e rua.
3x=2
Tangohia te 6 i te 8, ka 2.
x=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}