Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3-x=\left(x+1\right)\left(x+2\right)\times 15
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+2\right).
3-x=\left(x^{2}+3x+2\right)\times 15
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
3-x=15x^{2}+45x+30
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x+2 ki te 15.
3-x-15x^{2}=45x+30
Tangohia te 15x^{2} mai i ngā taha e rua.
3-x-15x^{2}-45x=30
Tangohia te 45x mai i ngā taha e rua.
3-46x-15x^{2}=30
Pahekotia te -x me -45x, ka -46x.
3-46x-15x^{2}-30=0
Tangohia te 30 mai i ngā taha e rua.
-27-46x-15x^{2}=0
Tangohia te 30 i te 3, ka -27.
-15x^{2}-46x-27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-46\right)±\sqrt{\left(-46\right)^{2}-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, -46 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-46\right)±\sqrt{2116-4\left(-15\right)\left(-27\right)}}{2\left(-15\right)}
Pūrua -46.
x=\frac{-\left(-46\right)±\sqrt{2116+60\left(-27\right)}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
x=\frac{-\left(-46\right)±\sqrt{2116-1620}}{2\left(-15\right)}
Whakareatia 60 ki te -27.
x=\frac{-\left(-46\right)±\sqrt{496}}{2\left(-15\right)}
Tāpiri 2116 ki te -1620.
x=\frac{-\left(-46\right)±4\sqrt{31}}{2\left(-15\right)}
Tuhia te pūtakerua o te 496.
x=\frac{46±4\sqrt{31}}{2\left(-15\right)}
Ko te tauaro o -46 ko 46.
x=\frac{46±4\sqrt{31}}{-30}
Whakareatia 2 ki te -15.
x=\frac{4\sqrt{31}+46}{-30}
Nā, me whakaoti te whārite x=\frac{46±4\sqrt{31}}{-30} ina he tāpiri te ±. Tāpiri 46 ki te 4\sqrt{31}.
x=\frac{-2\sqrt{31}-23}{15}
Whakawehe 46+4\sqrt{31} ki te -30.
x=\frac{46-4\sqrt{31}}{-30}
Nā, me whakaoti te whārite x=\frac{46±4\sqrt{31}}{-30} ina he tango te ±. Tango 4\sqrt{31} mai i 46.
x=\frac{2\sqrt{31}-23}{15}
Whakawehe 46-4\sqrt{31} ki te -30.
x=\frac{-2\sqrt{31}-23}{15} x=\frac{2\sqrt{31}-23}{15}
Kua oti te whārite te whakatau.
3-x=\left(x+1\right)\left(x+2\right)\times 15
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x+1\right)\left(x+2\right).
3-x=\left(x^{2}+3x+2\right)\times 15
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
3-x=15x^{2}+45x+30
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x+2 ki te 15.
3-x-15x^{2}=45x+30
Tangohia te 15x^{2} mai i ngā taha e rua.
3-x-15x^{2}-45x=30
Tangohia te 45x mai i ngā taha e rua.
3-46x-15x^{2}=30
Pahekotia te -x me -45x, ka -46x.
-46x-15x^{2}=30-3
Tangohia te 3 mai i ngā taha e rua.
-46x-15x^{2}=27
Tangohia te 3 i te 30, ka 27.
-15x^{2}-46x=27
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-15x^{2}-46x}{-15}=\frac{27}{-15}
Whakawehea ngā taha e rua ki te -15.
x^{2}+\left(-\frac{46}{-15}\right)x=\frac{27}{-15}
Mā te whakawehe ki te -15 ka wetekia te whakareanga ki te -15.
x^{2}+\frac{46}{15}x=\frac{27}{-15}
Whakawehe -46 ki te -15.
x^{2}+\frac{46}{15}x=-\frac{9}{5}
Whakahekea te hautanga \frac{27}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{46}{15}x+\left(\frac{23}{15}\right)^{2}=-\frac{9}{5}+\left(\frac{23}{15}\right)^{2}
Whakawehea te \frac{46}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{23}{15}. Nā, tāpiria te pūrua o te \frac{23}{15} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{46}{15}x+\frac{529}{225}=-\frac{9}{5}+\frac{529}{225}
Pūruatia \frac{23}{15} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{46}{15}x+\frac{529}{225}=\frac{124}{225}
Tāpiri -\frac{9}{5} ki te \frac{529}{225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{23}{15}\right)^{2}=\frac{124}{225}
Tauwehea x^{2}+\frac{46}{15}x+\frac{529}{225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{15}\right)^{2}}=\sqrt{\frac{124}{225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{23}{15}=\frac{2\sqrt{31}}{15} x+\frac{23}{15}=-\frac{2\sqrt{31}}{15}
Whakarūnātia.
x=\frac{2\sqrt{31}-23}{15} x=\frac{-2\sqrt{31}-23}{15}
Me tango \frac{23}{15} mai i ngā taha e rua o te whārite.