Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{3-\sqrt{2}}{1-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{1-5}
Pūrua 1. Pūrua \sqrt{5}.
\frac{\left(3-\sqrt{2}\right)\left(1+\sqrt{5}\right)}{-4}
Tangohia te 5 i te 1, ka -4.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{2}\sqrt{5}}{-4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3-\sqrt{2} ki ia tau o 1+\sqrt{5}.
\frac{3+3\sqrt{5}-\sqrt{2}-\sqrt{10}}{-4}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-3-3\sqrt{5}+\sqrt{2}+\sqrt{10}}{4}
Me whakarea tahi te taurunga me te tauraro ki te -1.