Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+4x=5\left(2x+9\right)
Tē taea kia ōrite te tāupe x ki -\frac{9}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+9.
3x^{2}+4x=10x+45
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x+9.
3x^{2}+4x-10x=45
Tangohia te 10x mai i ngā taha e rua.
3x^{2}-6x=45
Pahekotia te 4x me -10x, ka -6x.
3x^{2}-6x-45=0
Tangohia te 45 mai i ngā taha e rua.
x^{2}-2x-15=0
Whakawehea ngā taha e rua ki te 3.
a+b=-2 ab=1\left(-15\right)=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-15 3,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
1-15=-14 3-5=-2
Tātaihia te tapeke mō ia takirua.
a=-5 b=3
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-5x\right)+\left(3x-15\right)
Tuhia anō te x^{2}-2x-15 hei \left(x^{2}-5x\right)+\left(3x-15\right).
x\left(x-5\right)+3\left(x-5\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x-5\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-3
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+3=0.
3x^{2}+4x=5\left(2x+9\right)
Tē taea kia ōrite te tāupe x ki -\frac{9}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+9.
3x^{2}+4x=10x+45
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x+9.
3x^{2}+4x-10x=45
Tangohia te 10x mai i ngā taha e rua.
3x^{2}-6x=45
Pahekotia te 4x me -10x, ka -6x.
3x^{2}-6x-45=0
Tangohia te 45 mai i ngā taha e rua.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-45\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -6 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-45\right)}}{2\times 3}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-45\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{36+540}}{2\times 3}
Whakareatia -12 ki te -45.
x=\frac{-\left(-6\right)±\sqrt{576}}{2\times 3}
Tāpiri 36 ki te 540.
x=\frac{-\left(-6\right)±24}{2\times 3}
Tuhia te pūtakerua o te 576.
x=\frac{6±24}{2\times 3}
Ko te tauaro o -6 ko 6.
x=\frac{6±24}{6}
Whakareatia 2 ki te 3.
x=\frac{30}{6}
Nā, me whakaoti te whārite x=\frac{6±24}{6} ina he tāpiri te ±. Tāpiri 6 ki te 24.
x=5
Whakawehe 30 ki te 6.
x=-\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{6±24}{6} ina he tango te ±. Tango 24 mai i 6.
x=-3
Whakawehe -18 ki te 6.
x=5 x=-3
Kua oti te whārite te whakatau.
3x^{2}+4x=5\left(2x+9\right)
Tē taea kia ōrite te tāupe x ki -\frac{9}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2x+9.
3x^{2}+4x=10x+45
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 2x+9.
3x^{2}+4x-10x=45
Tangohia te 10x mai i ngā taha e rua.
3x^{2}-6x=45
Pahekotia te 4x me -10x, ka -6x.
\frac{3x^{2}-6x}{3}=\frac{45}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{45}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-2x=\frac{45}{3}
Whakawehe -6 ki te 3.
x^{2}-2x=15
Whakawehe 45 ki te 3.
x^{2}-2x+1=15+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=16
Tāpiri 15 ki te 1.
\left(x-1\right)^{2}=16
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=4 x-1=-4
Whakarūnātia.
x=5 x=-3
Me tāpiri 1 ki ngā taha e rua o te whārite.