Aromātai
-3
Tauwehe
-3
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{\frac{6+2}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakareatia te 2 ki te 3, ka 6.
\frac{3\sqrt{\frac{8}{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tāpirihia te 6 ki te 2, ka 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{6}}{\frac{1}{2}}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Me whakakore te 3 me te 3.
2\sqrt{6}\times 2\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakawehe 2\sqrt{6} ki te \frac{1}{2} mā te whakarea 2\sqrt{6} ki te tau huripoki o \frac{1}{2}.
4\sqrt{6}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakareatia te 2 ki te 2, ka 4.
4\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2}}{\sqrt{5}}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Whakangāwaritia te tauraro o \frac{\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
4\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Ko te pūrua o \sqrt{5} ko 5.
4\sqrt{6}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\left(-1\right)}{8}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Tuhia te 4\left(-\frac{1}{8}\right) hei hautanga kotahi.
\frac{-4}{8}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Whakareatia te 4 ki te -1, ka -4.
-\frac{1}{2}\sqrt{6}\times \frac{\sqrt{10}}{5}\sqrt{15}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{-\sqrt{10}}{2\times 5}\sqrt{6}\sqrt{15}
Me whakarea te -\frac{1}{2} ki te \frac{\sqrt{10}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{10}\sqrt{15}}{2\times 5}\sqrt{6}
Tuhia te \frac{-\sqrt{10}}{2\times 5}\sqrt{15} hei hautanga kotahi.
\frac{-\sqrt{150}}{2\times 5}\sqrt{6}
Hei whakarea \sqrt{10} me \sqrt{15}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{150}}{10}\sqrt{6}
Whakareatia te 2 ki te 5, ka 10.
\frac{-5\sqrt{6}}{10}\sqrt{6}
Tauwehea te 150=5^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 6} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{6}. Tuhia te pūtakerua o te 5^{2}.
-\frac{1}{2}\sqrt{6}\sqrt{6}
Whakawehea te -5\sqrt{6} ki te 10, kia riro ko -\frac{1}{2}\sqrt{6}.
-\frac{1}{2}\times 6
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{-6}{2}
Tuhia te -\frac{1}{2}\times 6 hei hautanga kotahi.
-3
Whakawehea te -6 ki te 2, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}