Whakaoti mō x
x=-2
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 3.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
Pahekotia te 3x me 3x, ka 6x.
6x=-4\left(x-1\right)\left(x+1\right)
Tangohia te 3 i te 3, ka 0.
6x=\left(-4x+4\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-1.
6x=-4x^{2}+4
Whakamahia te āhuatanga tuaritanga hei whakarea te -4x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+4x^{2}=4
Me tāpiri te 4x^{2} ki ngā taha e rua.
6x+4x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
4x^{2}+6x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-4\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 6 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 4\left(-4\right)}}{2\times 4}
Pūrua 6.
x=\frac{-6±\sqrt{36-16\left(-4\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-6±\sqrt{36+64}}{2\times 4}
Whakareatia -16 ki te -4.
x=\frac{-6±\sqrt{100}}{2\times 4}
Tāpiri 36 ki te 64.
x=\frac{-6±10}{2\times 4}
Tuhia te pūtakerua o te 100.
x=\frac{-6±10}{8}
Whakareatia 2 ki te 4.
x=\frac{4}{8}
Nā, me whakaoti te whārite x=\frac{-6±10}{8} ina he tāpiri te ±. Tāpiri -6 ki te 10.
x=\frac{1}{2}
Whakahekea te hautanga \frac{4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{-6±10}{8} ina he tango te ±. Tango 10 mai i -6.
x=-2
Whakawehe -16 ki te 8.
x=\frac{1}{2} x=-2
Kua oti te whārite te whakatau.
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 3.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
Pahekotia te 3x me 3x, ka 6x.
6x=-4\left(x-1\right)\left(x+1\right)
Tangohia te 3 i te 3, ka 0.
6x=\left(-4x+4\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-1.
6x=-4x^{2}+4
Whakamahia te āhuatanga tuaritanga hei whakarea te -4x+4 ki te x+1 ka whakakotahi i ngā kupu rite.
6x+4x^{2}=4
Me tāpiri te 4x^{2} ki ngā taha e rua.
4x^{2}+6x=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4x^{2}+6x}{4}=\frac{4}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\frac{6}{4}x=\frac{4}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}+\frac{3}{2}x=\frac{4}{4}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{3}{2}x=1
Whakawehe 4 ki te 4.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=1+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
Tāpiri 1 ki te \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}+\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{4}=\frac{5}{4} x+\frac{3}{4}=-\frac{5}{4}
Whakarūnātia.
x=\frac{1}{2} x=-2
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}