Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-1\right)\times 3=\left(x+1\right)x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1.
3x-3=\left(x+1\right)x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 3.
3x-3=x^{2}+x+\left(x-1\right)\left(x+1\right)\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te x.
3x-3=x^{2}+x+\left(x^{2}-1\right)\left(-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+1 ka whakakotahi i ngā kupu rite.
3x-3=x^{2}+x-x^{2}+1
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te -1.
3x-3=x+1
Pahekotia te x^{2} me -x^{2}, ka 0.
3x-3-x=1
Tangohia te x mai i ngā taha e rua.
2x-3=1
Pahekotia te 3x me -x, ka 2x.
2x=1+3
Me tāpiri te 3 ki ngā taha e rua.
2x=4
Tāpirihia te 1 ki te 3, ka 4.
x=\frac{4}{2}
Whakawehea ngā taha e rua ki te 2.
x=2
Whakawehea te 4 ki te 2, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}