Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 3 }{ 8 } \div 1 \frac{ 1 }{ 2 } +1 \frac{ 1 }{ 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\times 2}{8\left(1\times 2+1\right)}+\frac{1\times 4+1}{4}
Whakawehe \frac{3}{8} ki te \frac{1\times 2+1}{2} mā te whakarea \frac{3}{8} ki te tau huripoki o \frac{1\times 2+1}{2}.
\frac{3}{4\left(1+2\right)}+\frac{1\times 4+1}{4}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3}{4\times 3}+\frac{1\times 4+1}{4}
Tāpirihia te 1 ki te 2, ka 3.
\frac{3}{12}+\frac{1\times 4+1}{4}
Whakareatia te 4 ki te 3, ka 12.
\frac{1}{4}+\frac{1\times 4+1}{4}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{4}+\frac{4+1}{4}
Whakareatia te 1 ki te 4, ka 4.
\frac{1}{4}+\frac{5}{4}
Tāpirihia te 4 ki te 1, ka 5.
\frac{1+5}{4}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{5}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6}{4}
Tāpirihia te 1 ki te 5, ka 6.
\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}