Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{2}}{5\times 2}-\left(-\frac{4}{5}\times \frac{\sqrt{2}}{2}\right)
Me whakarea te \frac{3}{5} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\sqrt{2}}{5\times 2}-\frac{-4\sqrt{2}}{5\times 2}
Me whakarea te -\frac{4}{5} ki te \frac{\sqrt{2}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3\sqrt{2}}{5\times 2}-\frac{-2\sqrt{2}}{5}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{3\sqrt{2}}{2\times 5}-\frac{2\left(-2\right)\sqrt{2}}{2\times 5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5\times 2 me 5 ko 2\times 5. Whakareatia \frac{-2\sqrt{2}}{5} ki te \frac{2}{2}.
\frac{3\sqrt{2}-2\left(-2\right)\sqrt{2}}{2\times 5}
Tā te mea he rite te tauraro o \frac{3\sqrt{2}}{2\times 5} me \frac{2\left(-2\right)\sqrt{2}}{2\times 5}, me tango rāua mā te tango i ō raua taurunga.
\frac{3\sqrt{2}+4\sqrt{2}}{2\times 5}
Mahia ngā whakarea i roto o 3\sqrt{2}-2\left(-2\right)\sqrt{2}.
\frac{7\sqrt{2}}{2\times 5}
Mahia ngā tātaitai i roto o 3\sqrt{2}+4\sqrt{2}.
\frac{7\sqrt{2}}{10}
Whakarohaina te 2\times 5.