Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{3000+x})
Tuhia te \frac{3}{3000+x}x hei hautanga kotahi.
\frac{\left(x^{1}+3000\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3000)}{\left(x^{1}+3000\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}+3000\right)\times 3x^{1-1}-3x^{1}x^{1-1}}{\left(x^{1}+3000\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}+3000\right)\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}+3000\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 3x^{0}+3000\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}+3000\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3x^{1}+3000\times 3x^{0}-3x^{1}}{\left(x^{1}+3000\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{3x^{1}+9000x^{0}-3x^{1}}{\left(x^{1}+3000\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(3-3\right)x^{1}+9000x^{0}}{\left(x^{1}+3000\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{9000x^{0}}{\left(x^{1}+3000\right)^{2}}
Tango 3 mai i 3.
\frac{9000x^{0}}{\left(x+3000\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{9000\times 1}{\left(x+3000\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{9000}{\left(x+3000\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
\frac{3x}{3000+x}
Tuhia te \frac{3}{3000+x}x hei hautanga kotahi.