Aromātai
\frac{3x}{4\left(3x+5\right)}
Kimi Pārōnaki e ai ki x
\frac{15}{4\left(3x+5\right)^{2}}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac{ 3 }{ 2x } \times ( \frac{ { x }^{ 2 } }{ 6x+10 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{3x^{2}}{2x\left(6x+10\right)}
Me whakarea te \frac{3}{2x} ki te \frac{x^{2}}{6x+10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3x}{2\left(6x+10\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{3x}{12x+20}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{2}}{2x\left(6x+10\right)})
Me whakarea te \frac{3}{2x} ki te \frac{x^{2}}{6x+10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{2\left(6x+10\right)})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{12x+20})
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+10.
\frac{\left(12x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1}+20)}{\left(12x^{1}+20\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(12x^{1}+20\right)\times 3x^{1-1}-3x^{1}\times 12x^{1-1}}{\left(12x^{1}+20\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(12x^{1}+20\right)\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Mahia ngā tātaitanga.
\frac{12x^{1}\times 3x^{0}+20\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{12\times 3x^{1}+20\times 3x^{0}-3\times 12x^{1}}{\left(12x^{1}+20\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{36x^{1}+60x^{0}-36x^{1}}{\left(12x^{1}+20\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(36-36\right)x^{1}+60x^{0}}{\left(12x^{1}+20\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{60x^{0}}{\left(12x^{1}+20\right)^{2}}
Tango 36 mai i 36.
\frac{60x^{0}}{\left(12x+20\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{60\times 1}{\left(12x+20\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{60}{\left(12x+20\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}