Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3x^{2}}{2x\left(6x+10\right)}
Me whakarea te \frac{3}{2x} ki te \frac{x^{2}}{6x+10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3x}{2\left(6x+10\right)}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{3x}{12x+20}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x^{2}}{2x\left(6x+10\right)})
Me whakarea te \frac{3}{2x} ki te \frac{x^{2}}{6x+10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{2\left(6x+10\right)})
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x}{12x+20})
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6x+10.
\frac{\left(12x^{1}+20\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1}+20)}{\left(12x^{1}+20\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(12x^{1}+20\right)\times 3x^{1-1}-3x^{1}\times 12x^{1-1}}{\left(12x^{1}+20\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(12x^{1}+20\right)\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Mahia ngā tātaitanga.
\frac{12x^{1}\times 3x^{0}+20\times 3x^{0}-3x^{1}\times 12x^{0}}{\left(12x^{1}+20\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{12\times 3x^{1}+20\times 3x^{0}-3\times 12x^{1}}{\left(12x^{1}+20\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{36x^{1}+60x^{0}-36x^{1}}{\left(12x^{1}+20\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(36-36\right)x^{1}+60x^{0}}{\left(12x^{1}+20\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{60x^{0}}{\left(12x^{1}+20\right)^{2}}
Tango 36 mai i 36.
\frac{60x^{0}}{\left(12x+20\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{60\times 1}{\left(12x+20\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{60}{\left(12x+20\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.