Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}x+\frac{3}{2}\times 5-\frac{1}{3}\left(x+2\right)=\frac{9}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{2} ki te x+5.
\frac{3}{2}x+\frac{3\times 5}{2}-\frac{1}{3}\left(x+2\right)=\frac{9}{2}
Tuhia te \frac{3}{2}\times 5 hei hautanga kotahi.
\frac{3}{2}x+\frac{15}{2}-\frac{1}{3}\left(x+2\right)=\frac{9}{2}
Whakareatia te 3 ki te 5, ka 15.
\frac{3}{2}x+\frac{15}{2}-\frac{1}{3}x-\frac{1}{3}\times 2=\frac{9}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{3} ki te x+2.
\frac{3}{2}x+\frac{15}{2}-\frac{1}{3}x+\frac{-2}{3}=\frac{9}{2}
Tuhia te -\frac{1}{3}\times 2 hei hautanga kotahi.
\frac{3}{2}x+\frac{15}{2}-\frac{1}{3}x-\frac{2}{3}=\frac{9}{2}
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
\frac{7}{6}x+\frac{15}{2}-\frac{2}{3}=\frac{9}{2}
Pahekotia te \frac{3}{2}x me -\frac{1}{3}x, ka \frac{7}{6}x.
\frac{7}{6}x+\frac{45}{6}-\frac{4}{6}=\frac{9}{2}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{15}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{7}{6}x+\frac{45-4}{6}=\frac{9}{2}
Tā te mea he rite te tauraro o \frac{45}{6} me \frac{4}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{6}x+\frac{41}{6}=\frac{9}{2}
Tangohia te 4 i te 45, ka 41.
\frac{7}{6}x=\frac{9}{2}-\frac{41}{6}
Tangohia te \frac{41}{6} mai i ngā taha e rua.
\frac{7}{6}x=\frac{27}{6}-\frac{41}{6}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{9}{2} me \frac{41}{6} ki te hautau me te tautūnga 6.
\frac{7}{6}x=\frac{27-41}{6}
Tā te mea he rite te tauraro o \frac{27}{6} me \frac{41}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{7}{6}x=\frac{-14}{6}
Tangohia te 41 i te 27, ka -14.
\frac{7}{6}x=-\frac{7}{3}
Whakahekea te hautanga \frac{-14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{7}{3}\times \frac{6}{7}
Me whakarea ngā taha e rua ki te \frac{6}{7}, te tau utu o \frac{7}{6}.
x=\frac{-7\times 6}{3\times 7}
Me whakarea te -\frac{7}{3} ki te \frac{6}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-42}{21}
Mahia ngā whakarea i roto i te hautanga \frac{-7\times 6}{3\times 7}.
x=-2
Whakawehea te -42 ki te 21, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}