Whakaoti mō x (complex solution)
x=\sqrt{6202621}-2489\approx 1.506173451
x=-\left(\sqrt{6202621}+2489\right)\approx -4979.506173451
Whakaoti mō x
x=\sqrt{6202621}-2489\approx 1.506173451
x=-\sqrt{6202621}-2489\approx -4979.506173451
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Whakareatia te 2 ki te \frac{3}{2}, ka 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Tāpirihia te 2625 ki te \frac{3}{2}, ka \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Whakareatia te 4 ki te \frac{5253}{2}, ka 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Whakareatia te 2 ki te 300, ka 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
3x+10506x\left(x+25\right)^{-1}-600=x
Tangohia te 600 mai i ngā taha e rua.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Tangohia te x mai i ngā taha e rua.
2x+10506x\left(x+25\right)^{-1}-600=0
Pahekotia te 3x me -x, ka 2x.
2x+10506\times \frac{1}{x+25}x-600=0
Whakaraupapatia anō ngā kīanga tau.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Tē taea kia ōrite te tāupe x ki -25 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+25.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+25.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
Whakareatia te 10506 ki te 1, ka 10506.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
Pahekotia te 50x me 10506x, ka 10556x.
2x^{2}+10556x-600x-15000=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+25 ki te -600.
2x^{2}+9956x-15000=0
Pahekotia te 10556x me -600x, ka 9956x.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 9956 mō b, me -15000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
Pūrua 9956.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
Whakareatia -8 ki te -15000.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
Tāpiri 99121936 ki te 120000.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
Tuhia te pūtakerua o te 99241936.
x=\frac{-9956±4\sqrt{6202621}}{4}
Whakareatia 2 ki te 2.
x=\frac{4\sqrt{6202621}-9956}{4}
Nā, me whakaoti te whārite x=\frac{-9956±4\sqrt{6202621}}{4} ina he tāpiri te ±. Tāpiri -9956 ki te 4\sqrt{6202621}.
x=\sqrt{6202621}-2489
Whakawehe -9956+4\sqrt{6202621} ki te 4.
x=\frac{-4\sqrt{6202621}-9956}{4}
Nā, me whakaoti te whārite x=\frac{-9956±4\sqrt{6202621}}{4} ina he tango te ±. Tango 4\sqrt{6202621} mai i -9956.
x=-\sqrt{6202621}-2489
Whakawehe -9956-4\sqrt{6202621} ki te 4.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Kua oti te whārite te whakatau.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Whakareatia te 2 ki te \frac{3}{2}, ka 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Tāpirihia te 2625 ki te \frac{3}{2}, ka \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Whakareatia te 4 ki te \frac{5253}{2}, ka 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Whakareatia te 2 ki te 300, ka 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
3x+10506x\left(x+25\right)^{-1}-x=600
Tangohia te x mai i ngā taha e rua.
2x+10506x\left(x+25\right)^{-1}=600
Pahekotia te 3x me -x, ka 2x.
2x+10506\times \frac{1}{x+25}x=600
Whakaraupapatia anō ngā kīanga tau.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
Tē taea kia ōrite te tāupe x ki -25 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+25.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+25.
2x^{2}+50x+10506x=600\left(x+25\right)
Whakareatia te 10506 ki te 1, ka 10506.
2x^{2}+10556x=600\left(x+25\right)
Pahekotia te 50x me 10506x, ka 10556x.
2x^{2}+10556x=600x+15000
Whakamahia te āhuatanga tohatoha hei whakarea te 600 ki te x+25.
2x^{2}+10556x-600x=15000
Tangohia te 600x mai i ngā taha e rua.
2x^{2}+9956x=15000
Pahekotia te 10556x me -600x, ka 9956x.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+4978x=\frac{15000}{2}
Whakawehe 9956 ki te 2.
x^{2}+4978x=7500
Whakawehe 15000 ki te 2.
x^{2}+4978x+2489^{2}=7500+2489^{2}
Whakawehea te 4978, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2489. Nā, tāpiria te pūrua o te 2489 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4978x+6195121=7500+6195121
Pūrua 2489.
x^{2}+4978x+6195121=6202621
Tāpiri 7500 ki te 6195121.
\left(x+2489\right)^{2}=6202621
Tauwehea x^{2}+4978x+6195121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Whakarūnātia.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Me tango 2489 mai i ngā taha e rua o te whārite.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Whakareatia te 2 ki te \frac{3}{2}, ka 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Tāpirihia te 2625 ki te \frac{3}{2}, ka \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Whakareatia te 4 ki te \frac{5253}{2}, ka 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Whakareatia te 2 ki te 300, ka 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
3x+10506x\left(x+25\right)^{-1}-600=x
Tangohia te 600 mai i ngā taha e rua.
3x+10506x\left(x+25\right)^{-1}-600-x=0
Tangohia te x mai i ngā taha e rua.
2x+10506x\left(x+25\right)^{-1}-600=0
Pahekotia te 3x me -x, ka 2x.
2x+10506\times \frac{1}{x+25}x-600=0
Whakaraupapatia anō ngā kīanga tau.
2x\left(x+25\right)+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Tē taea kia ōrite te tāupe x ki -25 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+25.
2x^{2}+50x+10506\times 1x+\left(x+25\right)\left(-600\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+25.
2x^{2}+50x+10506x+\left(x+25\right)\left(-600\right)=0
Whakareatia te 10506 ki te 1, ka 10506.
2x^{2}+10556x+\left(x+25\right)\left(-600\right)=0
Pahekotia te 50x me 10506x, ka 10556x.
2x^{2}+10556x-600x-15000=0
Whakamahia te āhuatanga tohatoha hei whakarea te x+25 ki te -600.
2x^{2}+9956x-15000=0
Pahekotia te 10556x me -600x, ka 9956x.
x=\frac{-9956±\sqrt{9956^{2}-4\times 2\left(-15000\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 9956 mō b, me -15000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9956±\sqrt{99121936-4\times 2\left(-15000\right)}}{2\times 2}
Pūrua 9956.
x=\frac{-9956±\sqrt{99121936-8\left(-15000\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-9956±\sqrt{99121936+120000}}{2\times 2}
Whakareatia -8 ki te -15000.
x=\frac{-9956±\sqrt{99241936}}{2\times 2}
Tāpiri 99121936 ki te 120000.
x=\frac{-9956±4\sqrt{6202621}}{2\times 2}
Tuhia te pūtakerua o te 99241936.
x=\frac{-9956±4\sqrt{6202621}}{4}
Whakareatia 2 ki te 2.
x=\frac{4\sqrt{6202621}-9956}{4}
Nā, me whakaoti te whārite x=\frac{-9956±4\sqrt{6202621}}{4} ina he tāpiri te ±. Tāpiri -9956 ki te 4\sqrt{6202621}.
x=\sqrt{6202621}-2489
Whakawehe -9956+4\sqrt{6202621} ki te 4.
x=\frac{-4\sqrt{6202621}-9956}{4}
Nā, me whakaoti te whārite x=\frac{-9956±4\sqrt{6202621}}{4} ina he tango te ±. Tango 4\sqrt{6202621} mai i -9956.
x=-\sqrt{6202621}-2489
Whakawehe -9956-4\sqrt{6202621} ki te 4.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Kua oti te whārite te whakatau.
2x\times \frac{3}{2}+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x, arā, te tauraro pātahi he tino iti rawa te kitea o 2,x.
3x+4x\left(x+25\right)^{-1}\left(2625+\frac{3}{2}\right)=2\times 300+2x\times \frac{1}{2}
Whakareatia te 2 ki te \frac{3}{2}, ka 3.
3x+4x\left(x+25\right)^{-1}\times \frac{5253}{2}=2\times 300+2x\times \frac{1}{2}
Tāpirihia te 2625 ki te \frac{3}{2}, ka \frac{5253}{2}.
3x+10506x\left(x+25\right)^{-1}=2\times 300+2x\times \frac{1}{2}
Whakareatia te 4 ki te \frac{5253}{2}, ka 10506.
3x+10506x\left(x+25\right)^{-1}=600+2x\times \frac{1}{2}
Whakareatia te 2 ki te 300, ka 600.
3x+10506x\left(x+25\right)^{-1}=600+x
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
3x+10506x\left(x+25\right)^{-1}-x=600
Tangohia te x mai i ngā taha e rua.
2x+10506x\left(x+25\right)^{-1}=600
Pahekotia te 3x me -x, ka 2x.
2x+10506\times \frac{1}{x+25}x=600
Whakaraupapatia anō ngā kīanga tau.
2x\left(x+25\right)+10506\times 1x=600\left(x+25\right)
Tē taea kia ōrite te tāupe x ki -25 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+25.
2x^{2}+50x+10506\times 1x=600\left(x+25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+25.
2x^{2}+50x+10506x=600\left(x+25\right)
Whakareatia te 10506 ki te 1, ka 10506.
2x^{2}+10556x=600\left(x+25\right)
Pahekotia te 50x me 10506x, ka 10556x.
2x^{2}+10556x=600x+15000
Whakamahia te āhuatanga tohatoha hei whakarea te 600 ki te x+25.
2x^{2}+10556x-600x=15000
Tangohia te 600x mai i ngā taha e rua.
2x^{2}+9956x=15000
Pahekotia te 10556x me -600x, ka 9956x.
\frac{2x^{2}+9956x}{2}=\frac{15000}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{9956}{2}x=\frac{15000}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+4978x=\frac{15000}{2}
Whakawehe 9956 ki te 2.
x^{2}+4978x=7500
Whakawehe 15000 ki te 2.
x^{2}+4978x+2489^{2}=7500+2489^{2}
Whakawehea te 4978, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2489. Nā, tāpiria te pūrua o te 2489 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4978x+6195121=7500+6195121
Pūrua 2489.
x^{2}+4978x+6195121=6202621
Tāpiri 7500 ki te 6195121.
\left(x+2489\right)^{2}=6202621
Tauwehea x^{2}+4978x+6195121. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2489\right)^{2}}=\sqrt{6202621}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2489=\sqrt{6202621} x+2489=-\sqrt{6202621}
Whakarūnātia.
x=\sqrt{6202621}-2489 x=-\sqrt{6202621}-2489
Me tango 2489 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}