Aromātai
15\sqrt{6}+27\sqrt[4]{3}-2\sqrt[3]{6}\approx 68.642103306
Tauwehe
15 \sqrt{6} + 27 \sqrt[4]{3} - 2 \sqrt[3]{6} = 68.642103306
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}\times 4\sqrt{6}+\sqrt[2]{486}-2\sqrt[3]{6}+9\sqrt[4]{243}
Tauwehea te 96=4^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 6} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{6}. Tuhia te pūtakerua o te 4^{2}.
6\sqrt{6}+\sqrt[2]{486}-2\sqrt[3]{6}+9\sqrt[4]{243}
Whakareatia te \frac{3}{2} ki te 4, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}