Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{3}{1-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{2}.
\frac{3\left(1+\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(1+\sqrt{2}\right)}{1-2}
Pūrua 1. Pūrua \sqrt{2}.
\frac{3\left(1+\sqrt{2}\right)}{-1}
Tangohia te 2 i te 1, ka -1.
-3\left(1+\sqrt{2}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-3-3\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 1+\sqrt{2}.