Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 3, ka -1.
-1+2x=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
-1+2x-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
-1+2x-x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
3+2x-x^{2}=0
Tāpirihia te -1 ki te 4, ka 3.
-x^{2}+2x+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Tuhia anō te -x^{2}+2x+3 hei \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-3\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x-1=0.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 3, ka -1.
-1+2x=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
-1+2x-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
-1+2x-x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
3+2x-x^{2}=0
Tāpirihia te -1 ki te 4, ka 3.
-x^{2}+2x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 2 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Whakareatia 4 ki te 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Tāpiri 4 ki te 12.
x=\frac{-2±4}{2\left(-1\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-2±4}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-2±4}{-2} ina he tāpiri te ±. Tāpiri -2 ki te 4.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-2±4}{-2} ina he tango te ±. Tango 4 mai i -2.
x=3
Whakawehe -6 ki te -2.
x=-1 x=3
Kua oti te whārite te whakatau.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Tangohia te 4 i te 3, ka -1.
-1+2x=x^{2}-4
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
-1+2x-x^{2}=-4
Tangohia te x^{2} mai i ngā taha e rua.
2x-x^{2}=-4+1
Me tāpiri te 1 ki ngā taha e rua.
2x-x^{2}=-3
Tāpirihia te -4 ki te 1, ka -3.
-x^{2}+2x=-3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-2x=-\frac{3}{-1}
Whakawehe 2 ki te -1.
x^{2}-2x=3
Whakawehe -3 ki te -1.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.