Aromātai
\frac{\sqrt{5}-25}{20}\approx -1.138196601
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
Whakangāwaritia te tauraro o \frac{3}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{3\sqrt{5}}{5}-\frac{2+\sqrt{5}}{3\sqrt{5}-5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{5}}{3\sqrt{5}-5} mā te whakarea i te taurunga me te tauraro ki te 3\sqrt{5}+5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{\left(3\sqrt{5}\right)^{2}-5^{2}}
Whakaarohia te \left(3\sqrt{5}-5\right)\left(3\sqrt{5}+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{3^{2}\left(\sqrt{5}\right)^{2}-5^{2}}
Whakarohaina te \left(3\sqrt{5}\right)^{2}.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\left(\sqrt{5}\right)^{2}-5^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{9\times 5-5^{2}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-5^{2}}
Whakareatia te 9 ki te 5, ka 45.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{45-25}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{3\sqrt{5}}{5}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
Tangohia te 25 i te 45, ka 20.
\frac{4\times 3\sqrt{5}}{20}-\frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5 me 20 ko 20. Whakareatia \frac{3\sqrt{5}}{5} ki te \frac{4}{4}.
\frac{4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}
Tā te mea he rite te tauraro o \frac{4\times 3\sqrt{5}}{20} me \frac{\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right)}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5}}{20}
Mahia ngā whakarea i roto o 4\times 3\sqrt{5}-\left(2+\sqrt{5}\right)\left(3\sqrt{5}+5\right).
\frac{\sqrt{5}-25}{20}
Mahia ngā tātaitai i roto o 12\sqrt{5}-6\sqrt{5}-10-15-5\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}