Whakaoti mō x
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 2x-4 }{ 7 } + \frac{ 1 }{ 7 } = - \frac{ x }{ 14 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(2x-4\right)+2=-x
Me whakarea ngā taha e rua o te whārite ki te 14, arā, te tauraro pātahi he tino iti rawa te kitea o 7,14.
4x-8+2=-x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2x-4.
4x-6=-x
Tāpirihia te -8 ki te 2, ka -6.
4x-6+x=0
Me tāpiri te x ki ngā taha e rua.
5x-6=0
Pahekotia te 4x me x, ka 5x.
5x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{6}{5}
Whakawehea ngā taha e rua ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}