Whakaoti mō x
x=\frac{31}{44}\approx 0.704545455
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\left(2x-1\right)}{45}-\frac{9\left(x-4\right)}{45}=x
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 9 me 5 ko 45. Whakareatia \frac{2x-1}{9} ki te \frac{5}{5}. Whakareatia \frac{x-4}{5} ki te \frac{9}{9}.
\frac{5\left(2x-1\right)-9\left(x-4\right)}{45}=x
Tā te mea he rite te tauraro o \frac{5\left(2x-1\right)}{45} me \frac{9\left(x-4\right)}{45}, me tango rāua mā te tango i ō raua taurunga.
\frac{10x-5-9x+36}{45}=x
Mahia ngā whakarea i roto o 5\left(2x-1\right)-9\left(x-4\right).
\frac{x+31}{45}=x
Whakakotahitia ngā kupu rite i 10x-5-9x+36.
\frac{1}{45}x+\frac{31}{45}=x
Whakawehea ia wā o x+31 ki te 45, kia riro ko \frac{1}{45}x+\frac{31}{45}.
\frac{1}{45}x+\frac{31}{45}-x=0
Tangohia te x mai i ngā taha e rua.
-\frac{44}{45}x+\frac{31}{45}=0
Pahekotia te \frac{1}{45}x me -x, ka -\frac{44}{45}x.
-\frac{44}{45}x=-\frac{31}{45}
Tangohia te \frac{31}{45} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{31}{45}\left(-\frac{45}{44}\right)
Me whakarea ngā taha e rua ki te -\frac{45}{44}, te tau utu o -\frac{44}{45}.
x=\frac{-31\left(-45\right)}{45\times 44}
Me whakarea te -\frac{31}{45} ki te -\frac{45}{44} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{1395}{1980}
Mahia ngā whakarea i roto i te hautanga \frac{-31\left(-45\right)}{45\times 44}.
x=\frac{31}{44}
Whakahekea te hautanga \frac{1395}{1980} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 45.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}