Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+6=3x^{2}
Whakareatia ngā taha e rua o te whārite ki te 3.
2x+6-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
-3x^{2}+2x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 6}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 2 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 6}}{2\left(-3\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+12\times 6}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-2±\sqrt{4+72}}{2\left(-3\right)}
Whakareatia 12 ki te 6.
x=\frac{-2±\sqrt{76}}{2\left(-3\right)}
Tāpiri 4 ki te 72.
x=\frac{-2±2\sqrt{19}}{2\left(-3\right)}
Tuhia te pūtakerua o te 76.
x=\frac{-2±2\sqrt{19}}{-6}
Whakareatia 2 ki te -3.
x=\frac{2\sqrt{19}-2}{-6}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{19}}{-6} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{19}.
x=\frac{1-\sqrt{19}}{3}
Whakawehe -2+2\sqrt{19} ki te -6.
x=\frac{-2\sqrt{19}-2}{-6}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{19}}{-6} ina he tango te ±. Tango 2\sqrt{19} mai i -2.
x=\frac{\sqrt{19}+1}{3}
Whakawehe -2-2\sqrt{19} ki te -6.
x=\frac{1-\sqrt{19}}{3} x=\frac{\sqrt{19}+1}{3}
Kua oti te whārite te whakatau.
2x+6=3x^{2}
Whakareatia ngā taha e rua o te whārite ki te 3.
2x+6-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
2x-3x^{2}=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3x^{2}+2x=-6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=-\frac{6}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{2}{-3}x=-\frac{6}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{2}{3}x=-\frac{6}{-3}
Whakawehe 2 ki te -3.
x^{2}-\frac{2}{3}x=2
Whakawehe -6 ki te -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=2+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=2+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{19}{9}
Tāpiri 2 ki te \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{19}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{\sqrt{19}}{3} x-\frac{1}{3}=-\frac{\sqrt{19}}{3}
Whakarūnātia.
x=\frac{\sqrt{19}+1}{3} x=\frac{1-\sqrt{19}}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.