Whakaoti mō x
x=-\frac{2}{7}\approx -0.285714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(15x+2\right)\left(2x+3\right)=\left(5x-1\right)\left(6x+4\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{2}{15},\frac{1}{5} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(5x-1\right)\left(15x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 5x-1,15x+2.
30x^{2}+49x+6=\left(5x-1\right)\left(6x+4\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 15x+2 ki te 2x+3 ka whakakotahi i ngā kupu rite.
30x^{2}+49x+6=30x^{2}+14x-4
Whakamahia te āhuatanga tuaritanga hei whakarea te 5x-1 ki te 6x+4 ka whakakotahi i ngā kupu rite.
30x^{2}+49x+6-30x^{2}=14x-4
Tangohia te 30x^{2} mai i ngā taha e rua.
49x+6=14x-4
Pahekotia te 30x^{2} me -30x^{2}, ka 0.
49x+6-14x=-4
Tangohia te 14x mai i ngā taha e rua.
35x+6=-4
Pahekotia te 49x me -14x, ka 35x.
35x=-4-6
Tangohia te 6 mai i ngā taha e rua.
35x=-10
Tangohia te 6 i te -4, ka -10.
x=\frac{-10}{35}
Whakawehea ngā taha e rua ki te 35.
x=-\frac{2}{7}
Whakahekea te hautanga \frac{-10}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}