Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-2)}{\left(3x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(3x^{1}-2\right)\times 2x^{1-1}-2x^{1}\times 3x^{1-1}}{\left(3x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(3x^{1}-2\right)\times 2x^{0}-2x^{1}\times 3x^{0}}{\left(3x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{3x^{1}\times 2x^{0}-2\times 2x^{0}-2x^{1}\times 3x^{0}}{\left(3x^{1}-2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3\times 2x^{1}-2\times 2x^{0}-2\times 3x^{1}}{\left(3x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{6x^{1}-4x^{0}-6x^{1}}{\left(3x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(6-6\right)x^{1}-4x^{0}}{\left(3x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-4x^{0}}{\left(3x^{1}-2\right)^{2}}
Tango 6 mai i 6.
\frac{-4x^{0}}{\left(3x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-4}{\left(3x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.