Aromātai
\frac{48}{7\left(1+\sqrt{3}i\right)}\approx 1.714285714-2.969229956i
Wāhi Tūturu
240Re(\frac{1}{35\left(1+\sqrt{3}i\right)})
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac{ 240 }{ 25+25 \sqrt{ 3 } i+10+ \sqrt{ 300 } i }
Tohaina
Kua tāruatia ki te papatopenga
\frac{240}{35+25i\sqrt{3}+i\sqrt{300}}
Tāpirihia te 25 ki te 10, ka 35.
\frac{240}{35+25i\sqrt{3}+i\times 10\sqrt{3}}
Tauwehea te 300=10^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 3} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{3}. Tuhia te pūtakerua o te 10^{2}.
\frac{240}{35+35i\sqrt{3}}
Pahekotia te 25i\sqrt{3} me 10i\sqrt{3}, ka 35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{\left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{240}{35+35i\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 35-35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{35^{2}-\left(35i\sqrt{3}\right)^{2}}
Whakaarohia te \left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\sqrt{3}\right)^{2}}
Tātaihia te 35 mā te pū o 2, kia riro ko 1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(35i\sqrt{3}\right)^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\left(\sqrt{3}\right)^{2}\right)}
Tātaihia te 35i mā te pū o 2, kia riro ko -1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\times 3\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-3675\right)}
Whakareatia te -1225 ki te 3, ka -3675.
\frac{240\left(35-35i\sqrt{3}\right)}{1225+3675}
Whakareatia te -1 ki te -3675, ka 3675.
\frac{240\left(35-35i\sqrt{3}\right)}{4900}
Tāpirihia te 1225 ki te 3675, ka 4900.
\frac{12}{245}\left(35-35i\sqrt{3}\right)
Whakawehea te 240\left(35-35i\sqrt{3}\right) ki te 4900, kia riro ko \frac{12}{245}\left(35-35i\sqrt{3}\right).
\frac{12}{245}\times 35+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{12}{245} ki te 35-35i\sqrt{3}.
\frac{12\times 35}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Tuhia te \frac{12}{245}\times 35 hei hautanga kotahi.
\frac{420}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakareatia te 12 ki te 35, ka 420.
\frac{12}{7}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakahekea te hautanga \frac{420}{245} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
\frac{12}{7}-\frac{12}{7}i\sqrt{3}
Whakareatia te \frac{12}{245} ki te -35i, ka -\frac{12}{7}i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}