Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{240}{35+25i\sqrt{3}+i\sqrt{300}}
Tāpirihia te 25 ki te 10, ka 35.
\frac{240}{35+25i\sqrt{3}+i\times 10\sqrt{3}}
Tauwehea te 300=10^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 3} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{3}. Tuhia te pūtakerua o te 10^{2}.
\frac{240}{35+35i\sqrt{3}}
Pahekotia te 25i\sqrt{3} me 10i\sqrt{3}, ka 35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{\left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{240}{35+35i\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 35-35i\sqrt{3}.
\frac{240\left(35-35i\sqrt{3}\right)}{35^{2}-\left(35i\sqrt{3}\right)^{2}}
Whakaarohia te \left(35+35i\sqrt{3}\right)\left(35-35i\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\sqrt{3}\right)^{2}}
Tātaihia te 35 mā te pū o 2, kia riro ko 1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(35i\right)^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(35i\sqrt{3}\right)^{2}.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\left(\sqrt{3}\right)^{2}\right)}
Tātaihia te 35i mā te pū o 2, kia riro ko -1225.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-1225\times 3\right)}
Ko te pūrua o \sqrt{3} ko 3.
\frac{240\left(35-35i\sqrt{3}\right)}{1225-\left(-3675\right)}
Whakareatia te -1225 ki te 3, ka -3675.
\frac{240\left(35-35i\sqrt{3}\right)}{1225+3675}
Whakareatia te -1 ki te -3675, ka 3675.
\frac{240\left(35-35i\sqrt{3}\right)}{4900}
Tāpirihia te 1225 ki te 3675, ka 4900.
\frac{12}{245}\left(35-35i\sqrt{3}\right)
Whakawehea te 240\left(35-35i\sqrt{3}\right) ki te 4900, kia riro ko \frac{12}{245}\left(35-35i\sqrt{3}\right).
\frac{12}{245}\times 35+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{12}{245} ki te 35-35i\sqrt{3}.
\frac{12\times 35}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Tuhia te \frac{12}{245}\times 35 hei hautanga kotahi.
\frac{420}{245}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakareatia te 12 ki te 35, ka 420.
\frac{12}{7}+\frac{12}{245}\times \left(-35i\right)\sqrt{3}
Whakahekea te hautanga \frac{420}{245} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
\frac{12}{7}-\frac{12}{7}i\sqrt{3}
Whakareatia te \frac{12}{245} ki te -35i, ka -\frac{12}{7}i.