Whakaoti mō x
x=12
x=155
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(67-x\right)\times 2200+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 67,100 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-100\right)\left(x-67\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100-x,67-x.
147400-2200x+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tohatoha hei whakarea te 67-x ki te 2200.
147400-2200x+\left(x^{2}-167x+6700\right)\times 15=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tuaritanga hei whakarea te x-100 ki te x-67 ka whakakotahi i ngā kupu rite.
147400-2200x+15x^{2}-2505x+100500=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-167x+6700 ki te 15.
147400-4705x+15x^{2}+100500=\left(100-x\right)\times 22\times 100
Pahekotia te -2200x me -2505x, ka -4705x.
247900-4705x+15x^{2}=\left(100-x\right)\times 22\times 100
Tāpirihia te 147400 ki te 100500, ka 247900.
247900-4705x+15x^{2}=\left(100-x\right)\times 2200
Whakareatia te 22 ki te 100, ka 2200.
247900-4705x+15x^{2}=220000-2200x
Whakamahia te āhuatanga tohatoha hei whakarea te 100-x ki te 2200.
247900-4705x+15x^{2}-220000=-2200x
Tangohia te 220000 mai i ngā taha e rua.
27900-4705x+15x^{2}=-2200x
Tangohia te 220000 i te 247900, ka 27900.
27900-4705x+15x^{2}+2200x=0
Me tāpiri te 2200x ki ngā taha e rua.
27900-2505x+15x^{2}=0
Pahekotia te -4705x me 2200x, ka -2505x.
15x^{2}-2505x+27900=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2505\right)±\sqrt{\left(-2505\right)^{2}-4\times 15\times 27900}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -2505 mō b, me 27900 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2505\right)±\sqrt{6275025-4\times 15\times 27900}}{2\times 15}
Pūrua -2505.
x=\frac{-\left(-2505\right)±\sqrt{6275025-60\times 27900}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-2505\right)±\sqrt{6275025-1674000}}{2\times 15}
Whakareatia -60 ki te 27900.
x=\frac{-\left(-2505\right)±\sqrt{4601025}}{2\times 15}
Tāpiri 6275025 ki te -1674000.
x=\frac{-\left(-2505\right)±2145}{2\times 15}
Tuhia te pūtakerua o te 4601025.
x=\frac{2505±2145}{2\times 15}
Ko te tauaro o -2505 ko 2505.
x=\frac{2505±2145}{30}
Whakareatia 2 ki te 15.
x=\frac{4650}{30}
Nā, me whakaoti te whārite x=\frac{2505±2145}{30} ina he tāpiri te ±. Tāpiri 2505 ki te 2145.
x=155
Whakawehe 4650 ki te 30.
x=\frac{360}{30}
Nā, me whakaoti te whārite x=\frac{2505±2145}{30} ina he tango te ±. Tango 2145 mai i 2505.
x=12
Whakawehe 360 ki te 30.
x=155 x=12
Kua oti te whārite te whakatau.
\left(67-x\right)\times 2200+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 67,100 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-100\right)\left(x-67\right), arā, te tauraro pātahi he tino iti rawa te kitea o 100-x,67-x.
147400-2200x+\left(x-100\right)\left(x-67\right)\times 15=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tohatoha hei whakarea te 67-x ki te 2200.
147400-2200x+\left(x^{2}-167x+6700\right)\times 15=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tuaritanga hei whakarea te x-100 ki te x-67 ka whakakotahi i ngā kupu rite.
147400-2200x+15x^{2}-2505x+100500=\left(100-x\right)\times 22\times 100
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-167x+6700 ki te 15.
147400-4705x+15x^{2}+100500=\left(100-x\right)\times 22\times 100
Pahekotia te -2200x me -2505x, ka -4705x.
247900-4705x+15x^{2}=\left(100-x\right)\times 22\times 100
Tāpirihia te 147400 ki te 100500, ka 247900.
247900-4705x+15x^{2}=\left(100-x\right)\times 2200
Whakareatia te 22 ki te 100, ka 2200.
247900-4705x+15x^{2}=220000-2200x
Whakamahia te āhuatanga tohatoha hei whakarea te 100-x ki te 2200.
247900-4705x+15x^{2}+2200x=220000
Me tāpiri te 2200x ki ngā taha e rua.
247900-2505x+15x^{2}=220000
Pahekotia te -4705x me 2200x, ka -2505x.
-2505x+15x^{2}=220000-247900
Tangohia te 247900 mai i ngā taha e rua.
-2505x+15x^{2}=-27900
Tangohia te 247900 i te 220000, ka -27900.
15x^{2}-2505x=-27900
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{15x^{2}-2505x}{15}=-\frac{27900}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\left(-\frac{2505}{15}\right)x=-\frac{27900}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}-167x=-\frac{27900}{15}
Whakawehe -2505 ki te 15.
x^{2}-167x=-1860
Whakawehe -27900 ki te 15.
x^{2}-167x+\left(-\frac{167}{2}\right)^{2}=-1860+\left(-\frac{167}{2}\right)^{2}
Whakawehea te -167, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{167}{2}. Nā, tāpiria te pūrua o te -\frac{167}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-167x+\frac{27889}{4}=-1860+\frac{27889}{4}
Pūruatia -\frac{167}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-167x+\frac{27889}{4}=\frac{20449}{4}
Tāpiri -1860 ki te \frac{27889}{4}.
\left(x-\frac{167}{2}\right)^{2}=\frac{20449}{4}
Tauwehea x^{2}-167x+\frac{27889}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{167}{2}\right)^{2}}=\sqrt{\frac{20449}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{167}{2}=\frac{143}{2} x-\frac{167}{2}=-\frac{143}{2}
Whakarūnātia.
x=155 x=12
Me tāpiri \frac{167}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}