Whakaoti mō h
h=-\frac{63}{442}\approx -0.142533937
Tohaina
Kua tāruatia ki te papatopenga
2^{2}h-15^{2}h=99\times \frac{7}{22}
Me whakarea ngā taha e rua ki te \frac{7}{22}, te tau utu o \frac{22}{7}.
2^{2}h-15^{2}h=\frac{99\times 7}{22}
Tuhia te 99\times \frac{7}{22} hei hautanga kotahi.
2^{2}h-15^{2}h=\frac{693}{22}
Whakareatia te 99 ki te 7, ka 693.
2^{2}h-15^{2}h=\frac{63}{2}
Whakahekea te hautanga \frac{693}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
4h-15^{2}h=\frac{63}{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4h-225h=\frac{63}{2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
-221h=\frac{63}{2}
Pahekotia te 4h me -225h, ka -221h.
h=\frac{\frac{63}{2}}{-221}
Whakawehea ngā taha e rua ki te -221.
h=\frac{63}{2\left(-221\right)}
Tuhia te \frac{\frac{63}{2}}{-221} hei hautanga kotahi.
h=\frac{63}{-442}
Whakareatia te 2 ki te -221, ka -442.
h=-\frac{63}{442}
Ka taea te hautanga \frac{63}{-442} te tuhi anō ko -\frac{63}{442} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}