Aromātai
-\frac{23936}{5061}\approx -4.729500099
Tauwehe
-\frac{23936}{5061} = -4\frac{3692}{5061} = -4.729500098794705
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{20\times 187}{15}\times 8\left(4-8\right)}{1683-\left(4-8\right)}
Tuhia te 20\times \frac{187}{15} hei hautanga kotahi.
\frac{\frac{3740}{15}\times 8\left(4-8\right)}{1683-\left(4-8\right)}
Whakareatia te 20 ki te 187, ka 3740.
\frac{\frac{748}{3}\times 8\left(4-8\right)}{1683-\left(4-8\right)}
Whakahekea te hautanga \frac{3740}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\frac{748\times 8}{3}\left(4-8\right)}{1683-\left(4-8\right)}
Tuhia te \frac{748}{3}\times 8 hei hautanga kotahi.
\frac{\frac{5984}{3}\left(4-8\right)}{1683-\left(4-8\right)}
Whakareatia te 748 ki te 8, ka 5984.
\frac{\frac{5984}{3}\left(-4\right)}{1683-\left(4-8\right)}
Tangohia te 8 i te 4, ka -4.
\frac{\frac{5984\left(-4\right)}{3}}{1683-\left(4-8\right)}
Tuhia te \frac{5984}{3}\left(-4\right) hei hautanga kotahi.
\frac{\frac{-23936}{3}}{1683-\left(4-8\right)}
Whakareatia te 5984 ki te -4, ka -23936.
\frac{-\frac{23936}{3}}{1683-\left(4-8\right)}
Ka taea te hautanga \frac{-23936}{3} te tuhi anō ko -\frac{23936}{3} mā te tango i te tohu tōraro.
\frac{-\frac{23936}{3}}{1683-\left(-4\right)}
Tangohia te 8 i te 4, ka -4.
\frac{-\frac{23936}{3}}{1683+4}
Ko te tauaro o -4 ko 4.
\frac{-\frac{23936}{3}}{1687}
Tāpirihia te 1683 ki te 4, ka 1687.
\frac{-23936}{3\times 1687}
Tuhia te \frac{-\frac{23936}{3}}{1687} hei hautanga kotahi.
\frac{-23936}{5061}
Whakareatia te 3 ki te 1687, ka 5061.
-\frac{23936}{5061}
Ka taea te hautanga \frac{-23936}{5061} te tuhi anō ko -\frac{23936}{5061} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}