Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+5\right)\times 20=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,x+5.
20x+100=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te 20.
20x+100=60x-300+\left(x-5\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 60.
20x+100=60x-300+x^{2}-25
Whakaarohia te \left(x-5\right)\left(x+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
20x+100=60x-325+x^{2}
Tangohia te 25 i te -300, ka -325.
20x+100-60x=-325+x^{2}
Tangohia te 60x mai i ngā taha e rua.
-40x+100=-325+x^{2}
Pahekotia te 20x me -60x, ka -40x.
-40x+100-\left(-325\right)=x^{2}
Tangohia te -325 mai i ngā taha e rua.
-40x+100+325=x^{2}
Ko te tauaro o -325 ko 325.
-40x+100+325-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-40x+425-x^{2}=0
Tāpirihia te 100 ki te 325, ka 425.
-x^{2}-40x+425=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-1\right)\times 425}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -40 mō b, me 425 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-1\right)\times 425}}{2\left(-1\right)}
Pūrua -40.
x=\frac{-\left(-40\right)±\sqrt{1600+4\times 425}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-40\right)±\sqrt{1600+1700}}{2\left(-1\right)}
Whakareatia 4 ki te 425.
x=\frac{-\left(-40\right)±\sqrt{3300}}{2\left(-1\right)}
Tāpiri 1600 ki te 1700.
x=\frac{-\left(-40\right)±10\sqrt{33}}{2\left(-1\right)}
Tuhia te pūtakerua o te 3300.
x=\frac{40±10\sqrt{33}}{2\left(-1\right)}
Ko te tauaro o -40 ko 40.
x=\frac{40±10\sqrt{33}}{-2}
Whakareatia 2 ki te -1.
x=\frac{10\sqrt{33}+40}{-2}
Nā, me whakaoti te whārite x=\frac{40±10\sqrt{33}}{-2} ina he tāpiri te ±. Tāpiri 40 ki te 10\sqrt{33}.
x=-5\sqrt{33}-20
Whakawehe 40+10\sqrt{33} ki te -2.
x=\frac{40-10\sqrt{33}}{-2}
Nā, me whakaoti te whārite x=\frac{40±10\sqrt{33}}{-2} ina he tango te ±. Tango 10\sqrt{33} mai i 40.
x=5\sqrt{33}-20
Whakawehe 40-10\sqrt{33} ki te -2.
x=-5\sqrt{33}-20 x=5\sqrt{33}-20
Kua oti te whārite te whakatau.
\left(x+5\right)\times 20=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -5,5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-5\right)\left(x+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-5,x+5.
20x+100=\left(x-5\right)\times 60+\left(x-5\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te 20.
20x+100=60x-300+\left(x-5\right)\left(x+5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-5 ki te 60.
20x+100=60x-300+x^{2}-25
Whakaarohia te \left(x-5\right)\left(x+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
20x+100=60x-325+x^{2}
Tangohia te 25 i te -300, ka -325.
20x+100-60x=-325+x^{2}
Tangohia te 60x mai i ngā taha e rua.
-40x+100=-325+x^{2}
Pahekotia te 20x me -60x, ka -40x.
-40x+100-x^{2}=-325
Tangohia te x^{2} mai i ngā taha e rua.
-40x-x^{2}=-325-100
Tangohia te 100 mai i ngā taha e rua.
-40x-x^{2}=-425
Tangohia te 100 i te -325, ka -425.
-x^{2}-40x=-425
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-40x}{-1}=-\frac{425}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{40}{-1}\right)x=-\frac{425}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+40x=-\frac{425}{-1}
Whakawehe -40 ki te -1.
x^{2}+40x=425
Whakawehe -425 ki te -1.
x^{2}+40x+20^{2}=425+20^{2}
Whakawehea te 40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 20. Nā, tāpiria te pūrua o te 20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+40x+400=425+400
Pūrua 20.
x^{2}+40x+400=825
Tāpiri 425 ki te 400.
\left(x+20\right)^{2}=825
Tauwehea x^{2}+40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{825}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+20=5\sqrt{33} x+20=-5\sqrt{33}
Whakarūnātia.
x=5\sqrt{33}-20 x=-5\sqrt{33}-20
Me tango 20 mai i ngā taha e rua o te whārite.