Aromātai
-\frac{9587}{2000}=-4.7935
Tauwehe
-\frac{9587}{2000} = -4\frac{1587}{2000} = -4.7935
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}+\frac{6}{1000}+\frac{1}{2000}-\frac{5}{1}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{1}{5}+\frac{3}{500}+\frac{1}{2000}-\frac{5}{1}
Whakahekea te hautanga \frac{6}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{100}{500}+\frac{3}{500}+\frac{1}{2000}-\frac{5}{1}
Ko te maha noa iti rawa atu o 5 me 500 ko 500. Me tahuri \frac{1}{5} me \frac{3}{500} ki te hautau me te tautūnga 500.
\frac{100+3}{500}+\frac{1}{2000}-\frac{5}{1}
Tā te mea he rite te tauraro o \frac{100}{500} me \frac{3}{500}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{103}{500}+\frac{1}{2000}-\frac{5}{1}
Tāpirihia te 100 ki te 3, ka 103.
\frac{412}{2000}+\frac{1}{2000}-\frac{5}{1}
Ko te maha noa iti rawa atu o 500 me 2000 ko 2000. Me tahuri \frac{103}{500} me \frac{1}{2000} ki te hautau me te tautūnga 2000.
\frac{412+1}{2000}-\frac{5}{1}
Tā te mea he rite te tauraro o \frac{412}{2000} me \frac{1}{2000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{413}{2000}-\frac{5}{1}
Tāpirihia te 412 ki te 1, ka 413.
\frac{413}{2000}-5
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{413}{2000}-\frac{10000}{2000}
Me tahuri te 5 ki te hautau \frac{10000}{2000}.
\frac{413-10000}{2000}
Tā te mea he rite te tauraro o \frac{413}{2000} me \frac{10000}{2000}, me tango rāua mā te tango i ō raua taurunga.
-\frac{9587}{2000}
Tangohia te 10000 i te 413, ka -9587.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}